Quantcast Broadside Arrays

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-31 an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements. Placing the ends of elements close together is frequently necessary because of construction problems, especially where long lengths of wire are involved. The effects of spacing and the advantages of proper spacing can be demonstrated by some practical examples. A collinear array consisting of two half-wave elements with 1/4-wavelength spacing between centers has a gain of 1.8 dB. If the ends of these same dipoles are separated so that the distance from center to center is 3/4 wavelengths and they are driven from the same source, the gain increases to approximately 2.9 dB. A three-dipole array with negligible spacing between elements gives a gain of 3.3 dB. In other words, when two elements are used with wider spacing, the gain obtained is approximately equal to the gain obtainable from three elements with close spacing. The spacing of this array permits simpler construction, since only two dipoles are used. It also allows the antenna to occupy less space. Construction problems usually dictate small-array spacing. Broadside Arrays A broadside array is shown in figure 4-26, view A. Physically, it looks somewhat like a ladder. When the array and the elements in it are polarized horizontally, it looks like an upright ladder. When the array is polarized vertically, it looks like a ladder lying on one side (view B). View C is an illustration of the radiation pattern of a broadside array. Horizontally polarized arrays using more than two elements are not common. This is because the requirement that the bottom of the array be a significant distance above the earth presents construction problems. Compared with collinear arrays, broadside arrays tune sharply, but lose efficiency rapidly when not operated on the frequencies for which they are designed. Figure 4-26.—Typical broadside array. RADIATION PATTERN.—Figure 4-27 shows an end view of two parallel half-wave antennas (A and B) operating in the same phase and located 1/2 wavelength apart. At a point (P) far removed from the antennas, the antennas appear as a single point. Energy radiating toward P from antenna A starts out in phase with the energy radiating from antenna B in the same direction. Propagation from each antenna travels over the same distance to point P, arriving there in phase. The antennas reinforce each other in this direction, making a strong signal available at P. Field strength measured at P is greater than it would be if the total power supplied to both antennas had been fed to a single dipole. Radiation toward point P1 is built up in the same manner.


Electrical News
Geotracker Tags Unlicensed Band
We're tracking a startup budding from San Francisco's Internet of...
eetimes.com
Teardown.com: Amazon Brings Fire to Phone Market
Qualcomm is the primary provider of the key integrated circuits...
eetimes.com
What's That Smell? An App for That Soon, Says Sensirion
With the acquisition of neighbouring cloud business Koubachi AG, Zurich-based...
eetimes.com
Samsung's Silicon Valley Home
Samsung is building a 10-story complex in the heart of...
eetimes.com
Sony Invests in Stacked Image Sensor Manufacturing Capacity
Sony Corp. has said it plans to invest 35 billion...
eetimes.com
Life After 28nm: Think Network-on-Chip
As Moore's Law reverses beyond 28nm, consider network-on-chip (NoC). While...
eetimes.com
NASA Exec Says, 'Boldly Go!'
Pete Worden, director of NASA's Ames Research Center, challenged a...
eetimes.com
Friday Quiz: Decibels and S Parameters
Test your knowledge of that ratio of two powers and...
eetimes.com
Freescale, with Solid Q2 Growth, Milks Auto IC Boom
Revenues of Freescale's five key product groups grew across the...
eetimes.com
Tricky Dicky Makers
Dick Smith Electronics (known colloquially as Tricky Dicks here in...
eevblog.com
IPC Releases Electronics Quality Survey
The annual survey provides insight into how electronics manufacturers are...
eetimes.com
7 Black Hat Sessions Sure to Cause a Stir
At Black Hat, researchers will point out the weaknesses in...
eetimes.com
Jibo Wants To Be Your Family's First Robot
Meet Jibo, a connected personal assistant that aims to be...
eetimes.com
Google, Facebook Clash at Con
Google and Facebook will share their visions of datacenter networking...
eetimes.com
Nadella's Windows 9 & Device Plans Explained
Microsoft CEO Satya Nadella says his company is "streamlining" Windows...
eetimes.com
Apple OS X Yosemite Beta Debuts
Apple's obsession with secrecy gives way to involving customers in...
eetimes.com
60 GHz Startup Targets Mobile
On the heels of Qualcomm's acquisition of 60 GHz chipset...
eetimes.com
Apple in China: Best Is Yet to Come?
Apple CEO Tim Cook described Apple's business prospect in China...
eetimes.com
Moog Theremini Melds Analog & Digital
Robert Moog, the inventor of the voltage-controlled oscillator that enabled...
eetimes.com
Power Week: Thermoelectric Energy Harvesting's Bright Future
This week, the future of sub-watt thermoelectric energy harvesting as...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +