Quantcast Broadside Arrays

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-31 an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements. Placing the ends of elements close together is frequently necessary because of construction problems, especially where long lengths of wire are involved. The effects of spacing and the advantages of proper spacing can be demonstrated by some practical examples. A collinear array consisting of two half-wave elements with 1/4-wavelength spacing between centers has a gain of 1.8 dB. If the ends of these same dipoles are separated so that the distance from center to center is 3/4 wavelengths and they are driven from the same source, the gain increases to approximately 2.9 dB. A three-dipole array with negligible spacing between elements gives a gain of 3.3 dB. In other words, when two elements are used with wider spacing, the gain obtained is approximately equal to the gain obtainable from three elements with close spacing. The spacing of this array permits simpler construction, since only two dipoles are used. It also allows the antenna to occupy less space. Construction problems usually dictate small-array spacing. Broadside Arrays A broadside array is shown in figure 4-26, view A. Physically, it looks somewhat like a ladder. When the array and the elements in it are polarized horizontally, it looks like an upright ladder. When the array is polarized vertically, it looks like a ladder lying on one side (view B). View C is an illustration of the radiation pattern of a broadside array. Horizontally polarized arrays using more than two elements are not common. This is because the requirement that the bottom of the array be a significant distance above the earth presents construction problems. Compared with collinear arrays, broadside arrays tune sharply, but lose efficiency rapidly when not operated on the frequencies for which they are designed. Figure 4-26.—Typical broadside array. RADIATION PATTERN.—Figure 4-27 shows an end view of two parallel half-wave antennas (A and B) operating in the same phase and located 1/2 wavelength apart. At a point (P) far removed from the antennas, the antennas appear as a single point. Energy radiating toward P from antenna A starts out in phase with the energy radiating from antenna B in the same direction. Propagation from each antenna travels over the same distance to point P, arriving there in phase. The antennas reinforce each other in this direction, making a strong signal available at P. Field strength measured at P is greater than it would be if the total power supplied to both antennas had been fed to a single dipole. Radiation toward point P1 is built up in the same manner.


Electrical News
eevBLAB #9 – Meet Dave
Meet Dave2, the first EEVblog employee....
eevblog.com
Qualcomm to Leverage Monolithic 3D for Smartphones
Qualcomm is looking to leverage Monolithic 3D IC technology to...
eetimes.com
Full Human Head Transplant May Be Closer Than You Think
Suddenly, some of the things we read in science fiction...
eetimes.com
Automotive Chip Reliability: A Matter of Design Methods
Up to 90% of all innovations today are generated through...
eetimes.com
Paper Memory Ready to Roll
Researchers at the Finish VTT Technical Research Centre have demonstrated...
eetimes.com
Top 10 Robotics Projects on Kickstarter
EBN takes a look at the newest robots coming down...
eetimes.com
Moore's Law: Dead or Alive
Moore's law is still alive and kicking after 50 years,...
eetimes.com
'Connected Home' Key to Intel's Lantiq Deal
Intel has formed a freshly minted "Connected Home Division," which...
eetimes.com
When Coding Errors Can Kill
Under a mild-sounding title, software safety expert Sean Beatty will...
eetimes.com
When Coding Errors Can Kill
Under a mild-sounding title, software safety expert Sean Beatty will...
eetimes.com
Friday Quiz: Power Circuits & Measurements
Learn from power-integrity expert Steve Sandler through his thoughtful questions...
eetimes.com
Vision for Machinery Becoming More Affordable
Machines that can see and act on that information are...
eetimes.com
Tiny Pacemaker for Tiny People
Micropacemaker is but another example of the how the trend...
eetimes.com
Rocket Fuels Student Space Dreams
Boston students hope to break records by launching a homegrown...
eetimes.com
Medtronic Wins EU Approval for Leadless Pacemaker
The approval comes a year and a half after St....
eetimes.com
Five Fascinating Power Facts About Supercomputers
Thought you knew everything about supercomputers - those almost unimaginably...
eetimes.com
EEVblog #734 – Giroptic 360cam Kickstarter Prototype
Dave takes a quick look at the first run Kickstarter...
eevblog.com
How Tesla Disrupts Infotainment Supply Chain
Automaker Tesla moves away from Tier-One designers on infotainment and...
eetimes.com
TSMC Cuts Capex by $1 Billion
Taiwan Semiconductor Manufacturing Co. (TSMC) is cutting its planned capital...
eetimes.com
Odds of Success of Mie Fujitsu, Japan's Pure-Play Foundry
Mie Fujitsu Semiconductor is a foundry born from Fujitsu's lack...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +