Quantcast Broadside Arrays

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-31 an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements. Placing the ends of elements close together is frequently necessary because of construction problems, especially where long lengths of wire are involved. The effects of spacing and the advantages of proper spacing can be demonstrated by some practical examples. A collinear array consisting of two half-wave elements with 1/4-wavelength spacing between centers has a gain of 1.8 dB. If the ends of these same dipoles are separated so that the distance from center to center is 3/4 wavelengths and they are driven from the same source, the gain increases to approximately 2.9 dB. A three-dipole array with negligible spacing between elements gives a gain of 3.3 dB. In other words, when two elements are used with wider spacing, the gain obtained is approximately equal to the gain obtainable from three elements with close spacing. The spacing of this array permits simpler construction, since only two dipoles are used. It also allows the antenna to occupy less space. Construction problems usually dictate small-array spacing. Broadside Arrays A broadside array is shown in figure 4-26, view A. Physically, it looks somewhat like a ladder. When the array and the elements in it are polarized horizontally, it looks like an upright ladder. When the array is polarized vertically, it looks like a ladder lying on one side (view B). View C is an illustration of the radiation pattern of a broadside array. Horizontally polarized arrays using more than two elements are not common. This is because the requirement that the bottom of the array be a significant distance above the earth presents construction problems. Compared with collinear arrays, broadside arrays tune sharply, but lose efficiency rapidly when not operated on the frequencies for which they are designed. Figure 4-26.—Typical broadside array. RADIATION PATTERN.—Figure 4-27 shows an end view of two parallel half-wave antennas (A and B) operating in the same phase and located 1/2 wavelength apart. At a point (P) far removed from the antennas, the antennas appear as a single point. Energy radiating toward P from antenna A starts out in phase with the energy radiating from antenna B in the same direction. Propagation from each antenna travels over the same distance to point P, arriving there in phase. The antennas reinforce each other in this direction, making a strong signal available at P. Field strength measured at P is greater than it would be if the total power supplied to both antennas had been fed to a single dipole. Radiation toward point P1 is built up in the same manner.


Electrical News
Wireless Net Takes the Next Train
The first products are about to adopt the new 802.15.4p...
eetimes.com
EEVblog #659 – Medical Plugpack Teardown
What’s inside an IEC60601-1 medical class 5V mains DC-DC plugpack?...
eevblog.com
Ethernet Links Go Green
Everything that uses energy uses too much if it. Energy...
eetimes.com
Android Wear: Where Are the Wares
Here are examples of some of the watches that use...
eetimes.com
Intel Wearables Contest Goes New Age
Emotional prosthetics, modular smartbands and sixth sense necklaces make up...
eetimes.com
EEVblog #658 – Mailbag
Mailbag Monday. Dave opens his mail Spoilers: Keithley 177 Multimeter...
eevblog.com
EEVblog #657 – Maker Faire 2014 Interviews
Some interviews from the 2014 Sydney Mini Maker Faire at...
eevblog.com
The Internet of Things Versus Slumlords
Smart thermostats are not only for the well-to-do. One group...
eetimes.com
IBM Watson Speeds Drug Research
IBM Watson moves from supplying known answers to tough questions...
eetimes.com
Samsung Funds III-V FinFETs in US Lab
Samsung is funding Penn State researchers working to fabricate III-V...
eetimes.com
LG, Samsung Debut Smartwatches, Apple Lurks
LG's G Watch R and Samsung's Gear S do little...
eetimes.com
Imagination Takes On Raspberry Pi
Imagination Technologies has developed its own version of Raspberry Pi,...
eetimes.com
California Smartphone Kill-Switch Law: What It Means
Do you understand the consequences of California's new smartphone anti-theft...
eetimes.com
9 Insights From Hot Interconnects
Facebook described its network switch, while experts picked apart flaws...
eetimes.com
Microchip in Pursuit of CSR
Microchip confirmed Thursday that it has had preliminary mutual discussions...
eetimes.com
Are There Marsquakes on Mars?
A 2016 mission will investigate the stuff under the surface...
eetimes.com
Friday Quiz: Forgotten T&M Companies
Remember the names of these test-equipment companies? Most are long...
eetimes.com
Rohm Opens MEMS Foundry Operation
Rohm Co. Ltd. created a foundry business at the six-inch...
eetimes.com
Touch Taiwan: Display Vendors' 10 Bold Forecasts
Display suppliers are in the know. The companies exhibiting at...
eetimes.com
Power Week: RF Charging Startup & Dialog Semi Team Up for Over-the-Air Power
This week, "over-the-air" power got a boost when RF charging...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +