Quantcast Broadside Arrays

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-31 an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements. Placing the ends of elements close together is frequently necessary because of construction problems, especially where long lengths of wire are involved. The effects of spacing and the advantages of proper spacing can be demonstrated by some practical examples. A collinear array consisting of two half-wave elements with 1/4-wavelength spacing between centers has a gain of 1.8 dB. If the ends of these same dipoles are separated so that the distance from center to center is 3/4 wavelengths and they are driven from the same source, the gain increases to approximately 2.9 dB. A three-dipole array with negligible spacing between elements gives a gain of 3.3 dB. In other words, when two elements are used with wider spacing, the gain obtained is approximately equal to the gain obtainable from three elements with close spacing. The spacing of this array permits simpler construction, since only two dipoles are used. It also allows the antenna to occupy less space. Construction problems usually dictate small-array spacing. Broadside Arrays A broadside array is shown in figure 4-26, view A. Physically, it looks somewhat like a ladder. When the array and the elements in it are polarized horizontally, it looks like an upright ladder. When the array is polarized vertically, it looks like a ladder lying on one side (view B). View C is an illustration of the radiation pattern of a broadside array. Horizontally polarized arrays using more than two elements are not common. This is because the requirement that the bottom of the array be a significant distance above the earth presents construction problems. Compared with collinear arrays, broadside arrays tune sharply, but lose efficiency rapidly when not operated on the frequencies for which they are designed. Figure 4-26.—Typical broadside array. RADIATION PATTERN.—Figure 4-27 shows an end view of two parallel half-wave antennas (A and B) operating in the same phase and located 1/2 wavelength apart. At a point (P) far removed from the antennas, the antennas appear as a single point. Energy radiating toward P from antenna A starts out in phase with the energy radiating from antenna B in the same direction. Propagation from each antenna travels over the same distance to point P, arriving there in phase. The antennas reinforce each other in this direction, making a strong signal available at P. Field strength measured at P is greater than it would be if the total power supplied to both antennas had been fed to a single dipole. Radiation toward point P1 is built up in the same manner.


Electrical News
Could India's Analog Wafer Fab be Moving South?
Cricket Semiconductor, a company set up with the purpose of...
eetimes.com
Apple Watch Tear Down Reveals European Chips
The Apple Watch, is the trailblazer of a wearables equipment...
eetimes.com
Ethernet Standards Ramp Up For Faster IT
The Ethernet Alliance and UNH-IOL hosted a plugfest to test...
eetimes.com
3-D Fingerprint Scanner Beats Apple's
The University of California at Davis, in cooperation with the...
eetimes.com
No Respect!
Every now and then, you see someone doing something, and...
eetimes.com
Friday Quiz: Name That 1994 Test Instrument
If you can remember back to 1994, then take a...
eetimes.com
It's a Bird. It's a Plane! It's a Drone!!
EE Times has gathered a panel of drone experts, including...
eetimes.com
Firework display as seen through the eyes of a drone
Have been thinking about purchasing a drone? If so, watching...
eetimes.com
FinFETs + FD-SOI Proposition: May Save Power
Ron Martino, vice president of application processors and advanced technology...
eetimes.com
Biodegradable Electronics Debut
Single crystal silicon transistors operating in the same microwave frequency...
eetimes.com
DesignCon 2016 Abstract Deadline Extended
You now have until Wednesday, July 8 so get your...
eetimes.com
IBM Makes Lake George World's Smartest Lake
Over 60 researchers, including ones from IBM and Rensselaer Polytechnic,...
eetimes.com
Developing Safety Certified Code for Industrial Systems
The right design framework and RTOS can help simplify and...
eetimes.com
Intel President, Execs Step Down
Intel President Renee James is among several top executives who...
eetimes.com
High-Speed Converters Aid Record Terabit Field Trial
Ultra high-speed digital-to-analog and analog-to-digital converters from Socionext Inc. (Yokohama,...
eetimes.com
Speech Recognizer / Synthesizer Shield for Arduino & Other MCUs
A Kickstarter project the just launched promises a rather interesting...
eetimes.com
Want a Free GPAK4 Mixed-Signal FPGA Development Kit From Silego?
25 GPAK4 mixed-signal FPGA development kits will be given by...
eetimes.com
IMB-GlobalFoundaries Deal Finalized
Following final approval by U.S. regulators, IBM closed the sale...
eetimes.com
20% Discount for ESC Silicon Valley 2015 Using Secret Code
Max's top-secret-squirrel code for the forthcoming ESC Silicon Valley 2015...
eetimes.com
UWAS: Playing Hide and Seek with Drones
The Paris Air Show (June 15-21) was rich in drone...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +