• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
Figure 2-7.Block diagram of a velocity servo
Figure 2-8.Degree of damping

Neets Module 15-Principles of Synchros, Servos, and Gyros
Page Navigation
  84    85    86    87    88  89  90    91    92    93    94  
2-11 decreased, the error signal would increase in amplitude and cause the motor to speed up. In the same way, if the antenna were to speed up, the tach output would increase, decreasing the error signal and the motor would slow down. Without the velocity loop to compensate for changing conditions, the load could not respond in the desired manner. The system shown in figure 2-7 is a simplified version of a velocity loop. In practice, the reaction of the motor to error voltage and the output of the tach would not be equal (10 rpm per volt and 1 volt per 10 rpm). This would be compensated for by gearing between the motor and load and between the load and tach, or by using a summation network in which the resistors (R2 and R3) are riot equal. This use of unequal resistors is called a SCALING FACTOR and compensates for tach outputs and required motor inputs. This is just another way of saying that the individual components of the velocity loop must be made to work together so that each can respond in a manner that produces the desired system result. Q-9.   What are two major differences between velocity servos and position servos? Q-10.   In a typical velocity servo block diagram what device is placed in the feedback loop that is not present in the position servo? Q-11.   What is the advantage of using a closed-servo loop to control load velocity? The Acceleration Servo The acceleration servo is similar to the two loops we just discussed except that the acceleration of the load is sensed, rather than the position or velocity. In this loop, the tachometer of the velocity loop is replaced by an accelerometer (a device that generates a signal in response to an acceleration) as the feedback device. We have not provided an illustration of the acceleration servo because of the complexity of its applications as well as its components. This type of servo is widely used in the rocket and missile fields, and is used whenever acceleration control is required. SERVO CHARACTERISTICS Servo characteristics vary primarily with the job the servo is designed to do. There are almost as many types of servos as there are jobs for servos. All servos usually have the common purpose of controlling output in a way ordered by the input. Ideally, motion and output shaft position should duplicate the track of the input shaft. However, this ideal performance is never achieved. We will discuss the major reasons for this, and show some methods used in the attempt to approach the ideal. Because a servo compares an input signal with a feedback response, there will always be a TIME LAG between the input signal and the actual movement of the load. Also, the weight of the load may introduce an additional time lag. The time lag of the servo can be decreased by increasing the gain of the servo amplifier. If the gain is set too high, however, the servo output will tend to oscillate and be unstable. From this you can see that the gain of a servo is limited by stability considerations. Servo sensitivity must be considered along with stability to reach a "happy medium." TIME LAG To reduce time lag, the gain of the servo amplifier could be increased. Increasing the gain of the servo amplifier will decrease the lag time and cause the load to move faster. However, there is a serious drawback because the load is moving faster, its inertia will likely cause it to go past the desired position






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.