Quantcast
OPEN-LOOP CONTROL SYSTEM

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-2 system and the complexity of the system are directly related to the requirements of the system's application. Control systems are broadly classified as either CLOSED-LOOP or OPEN-LOOP. Closed-loop control systems are the type most commonly used in the Navy because they respond and move the loads they are controlling quicker and with greater accuracy than open-loop systems. The reason for quicker response and greater accuracy is that an automatic feedback system informs the input that the desired movement has taken place. Upon receipt of this feedback information, the system stops the motor, and motion of the load ceases until another movement is ordered by the input. This is similar to the system that controls heat in many homes. The thermostat (input) calls for heat. The furnace (output) produces heat and distributes it. Some of the heat is "fed back" to the thermostat. When this "feedback" raises the temperature of the room to that of the thermostat setting, the thermostat responds by shutting the system down until heat is again required. In such a system, the feedback path, input to output and back to input, forms what is called a "closed loop." This is a term you will hear and use often in discussions of control systems. Because closed-loop control systems are automatic in nature, they are further classified by the function they serve (e.g., controlling the position, the velocity, or the acceleration of the load being driven). An open-loop control system is controlled directly, and only, by an input signal, without the benefit of feedback. The basic units of this system are an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. Open-loop control systems are not as commonly used as closed-loop control systems because they are less accurate. OPEN-LOOP CONTROL SYSTEM As we stated previously, an open-loop control system is controlled directly, and only, by an input signal. The basic units of this type consist only of an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. The open-loop control system is shown in basic block diagram form in figure 2-1. With this system, the input is a signal that is fed to the amplifier. The output of the amplifier is proportional to the amplitude of the input signal. The phase (ac system) and polarity (dc system) of the input signal determines the direction that the motor shaft will turn. After amplification, the input signal is fed to the motor, which moves the output shaft (load) in the direction that corresponds with the input signal. The motor will not stop driving the output shaft until the input signal is reduced to zero or removed. This system usually requires an operator who controls speed and direction of movement of the output by varying the input. The operator could be controlling the input by either a mechanical or an electrical linkage. Figure 2-1.—Open-loop control system basic block diagram.


Electrical News
IoT: A Return to Our Favorite EDA Requirements
For the electronic design automation (EDA) industry, the Internet of...
eetimes.com
Life Without DropBox? Unthinkable!
Once you've installed the DropBox app on your computers, anytime...
eetimes.com
New IC for Driverless LEDs
A Eurolighting module produces flicker-free LED light from 230 VAC....
eetimes.com
SanDisk Finds Profit Behind the Tech Curve
Focus and frugality put SanDisk in several sweet spots in...
eetimes.com
Will 'Makers' Help Chip Guys' Bottom Line?
Are you seeing this newborn love among "makers," board vendors,...
eetimes.com
Where Are DRAM Interfaces Headed?
What comes after today's fastest interfaces? Jim Handy talks about...
eetimes.com
IoT Requires Continuous Development
The Internet of Things will add so much programmability to...
eetimes.com
AMD Narrows Its Losses in Q1
As sales of PC continue to decline, AMD is looking...
eetimes.com
Quantum-Dot Windows Harvest Solar Energy
The windows of the future could harvest the sunlight passing...
eetimes.com
Patent Lessons From Apple v. Samsung
The Apple v. Samsung case exposes vast gray areas in...
eetimes.com
Fitness Wearables Lack Accuracy
A new generation of wearable fitness sensors is needed to...
eetimes.com
Bagels: Official Food of Test & Measurement
A bagel is the perfect food to eat at your...
eetimes.com
Max's BADASS Display, Part 3
Now we come to consider the various ways in which...
eetimes.com
Smartphones, 28nm Tech Drive TSMC 1Q Revenue
Thanks to demand for high-end smartphones and investment in technology...
eetimes.com
Quantenna Speeds Up WiFi
As several major companies roll out 802.11ac solutions with multi-user,...
eetimes.com
Samsung Patent Leaks Point to Google Glass Competitor
In a series of leaked patent documents from South Korea,...
eetimes.com
IMEC Adds Image Sensors to Commercial Development Service
The Belgian company has published a brochure that boasts of...
eetimes.com
Why iBeacon Is Important for You
It's true that iBeacon may help you find a restaurant...
eetimes.com
Sensors Combat Corrosion
The energy Piplines Cooperative Research Centre and Deakin University (Australia)...
eetimes.com
Power Week-in-Review: Wristband TE Generator & Solar Cell Efficiency Record
This week, a flexible band-shaped thermoelectric generator that can harvest...
eetimes.com
   


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +