Quantcast OPEN-LOOP CONTROL SYSTEM

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-2 system and the complexity of the system are directly related to the requirements of the system's application. Control systems are broadly classified as either CLOSED-LOOP or OPEN-LOOP. Closed-loop control systems are the type most commonly used in the Navy because they respond and move the loads they are controlling quicker and with greater accuracy than open-loop systems. The reason for quicker response and greater accuracy is that an automatic feedback system informs the input that the desired movement has taken place. Upon receipt of this feedback information, the system stops the motor, and motion of the load ceases until another movement is ordered by the input. This is similar to the system that controls heat in many homes. The thermostat (input) calls for heat. The furnace (output) produces heat and distributes it. Some of the heat is "fed back" to the thermostat. When this "feedback" raises the temperature of the room to that of the thermostat setting, the thermostat responds by shutting the system down until heat is again required. In such a system, the feedback path, input to output and back to input, forms what is called a "closed loop." This is a term you will hear and use often in discussions of control systems. Because closed-loop control systems are automatic in nature, they are further classified by the function they serve (e.g., controlling the position, the velocity, or the acceleration of the load being driven). An open-loop control system is controlled directly, and only, by an input signal, without the benefit of feedback. The basic units of this system are an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. Open-loop control systems are not as commonly used as closed-loop control systems because they are less accurate. OPEN-LOOP CONTROL SYSTEM As we stated previously, an open-loop control system is controlled directly, and only, by an input signal. The basic units of this type consist only of an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. The open-loop control system is shown in basic block diagram form in figure 2-1. With this system, the input is a signal that is fed to the amplifier. The output of the amplifier is proportional to the amplitude of the input signal. The phase (ac system) and polarity (dc system) of the input signal determines the direction that the motor shaft will turn. After amplification, the input signal is fed to the motor, which moves the output shaft (load) in the direction that corresponds with the input signal. The motor will not stop driving the output shaft until the input signal is reduced to zero or removed. This system usually requires an operator who controls speed and direction of movement of the output by varying the input. The operator could be controlling the input by either a mechanical or an electrical linkage. Figure 2-1.—Open-loop control system basic block diagram.


Electrical News
After Patient Deaths, Thoratec Reinstates Former CEO
Thoratec Corp. has replaced CEO Gary Burbach with the man...
eetimes.com
Saddleback Sale - It's Happy Dance Time
The folks at Saddleback Leather are having a sale, and...
eetimes.com
7 Tricks for Estimating Battery Life Accurately
Here are seven tricks that -- if followed -- can...
eetimes.com
Spansion to Launch 3D-Embedded Automotive MCU
Spansion will launch a new microcontroller designed to offer high-performance...
eetimes.com
Intel Leads Non-iPad Tablet Processor Market
Intel, striving to get processor design wins in mobile devices,...
eetimes.com
FDA's Device Approvals Come Under Fire, Again
A recent study concludes that most medical devices cleared via...
eetimes.com
Wearables & IoT Boom Creates Supply Chain Challenges
Great ideas for new wearables or connected electronic devices can...
eetimes.com
ARM Extends Into IoT Software
ARM has announced plans for IoT device and cloud software...
eetimes.com
Oven Performance Shows Flip Side of Thermal Management
The standard, ubiquitous cooking oven is not only inefficient but...
eetimes.com
Tabula's DesignInsight Offers 100% Observability Into 3PLDs
It's not going too far to say that Tabula's DesignInsight...
eetimes.com
MediaTek May Narrow Qualcomm's Lead in China's 4G Market
MediaTek has a chance to narrow Qualcomm's lead in China's...
eetimes.com
EEVblog #669 – FLIR TG165 Thermal Imager Teardown
What’s inside the new FLIR TG165 Visual IR Thermometer /...
eevblog.com
Connected Car Takes Center Stage at CTIA
Reporting from Super Mobility Week, Steve Bell gives us insights...
eetimes.com
Microsoft Announces Windows 10
Microsoft execs emphasize the desktop UI, say Windows 10's final...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Robots Confront Safety Standards
An emerging crop of industrial robots will be more user-friendly...
eetimes.com
Electronic Brain by 2023
Progress continues on fake brain to be used as test...
eetimes.com
Google, Silicon Labs Mesh for ZigBee-Like Protocol
Google's Nest-led Thread Group is meeting at its campus in...
eetimes.com
Bionic Ear Due Soon
STMicroelectronics collaborates with two companies on a bionic ear that...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +