Quantcast OPEN-LOOP CONTROL SYSTEM

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-2 system and the complexity of the system are directly related to the requirements of the system's application. Control systems are broadly classified as either CLOSED-LOOP or OPEN-LOOP. Closed-loop control systems are the type most commonly used in the Navy because they respond and move the loads they are controlling quicker and with greater accuracy than open-loop systems. The reason for quicker response and greater accuracy is that an automatic feedback system informs the input that the desired movement has taken place. Upon receipt of this feedback information, the system stops the motor, and motion of the load ceases until another movement is ordered by the input. This is similar to the system that controls heat in many homes. The thermostat (input) calls for heat. The furnace (output) produces heat and distributes it. Some of the heat is "fed back" to the thermostat. When this "feedback" raises the temperature of the room to that of the thermostat setting, the thermostat responds by shutting the system down until heat is again required. In such a system, the feedback path, input to output and back to input, forms what is called a "closed loop." This is a term you will hear and use often in discussions of control systems. Because closed-loop control systems are automatic in nature, they are further classified by the function they serve (e.g., controlling the position, the velocity, or the acceleration of the load being driven). An open-loop control system is controlled directly, and only, by an input signal, without the benefit of feedback. The basic units of this system are an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. Open-loop control systems are not as commonly used as closed-loop control systems because they are less accurate. OPEN-LOOP CONTROL SYSTEM As we stated previously, an open-loop control system is controlled directly, and only, by an input signal. The basic units of this type consist only of an amplifier and a motor. The amplifier receives a low- level input signal and amplifies it enough to drive the motor to perform the desired job. The open-loop control system is shown in basic block diagram form in figure 2-1. With this system, the input is a signal that is fed to the amplifier. The output of the amplifier is proportional to the amplitude of the input signal. The phase (ac system) and polarity (dc system) of the input signal determines the direction that the motor shaft will turn. After amplification, the input signal is fed to the motor, which moves the output shaft (load) in the direction that corresponds with the input signal. The motor will not stop driving the output shaft until the input signal is reduced to zero or removed. This system usually requires an operator who controls speed and direction of movement of the output by varying the input. The operator could be controlling the input by either a mechanical or an electrical linkage. Figure 2-1.—Open-loop control system basic block diagram.


Electrical News
Spend or Save? It's a Trick Question
Don't worry: This post is not about giving you tips...
eetimes.com
3D Printing Everywhere from Lab to Factory
3D printers have moved out of the toy store and...
eetimes.com
MTK Wrestles ARM A72 into Tablets
Taiwanese chipmaker MediaTek announced a new tablet SoC based on...
eetimes.com
EEVblog #719 – Sony Low Noise Audiophile SDXC Memory Card
Sony have released a new Audiophile / Audiophool “Low Noise”...
eevblog.com
Transactors -- Expanding the Role of FPGA-Based Prototypes
FPGA-based prototypes offer unbeatable flexibility, capacity, and speed. Extending their...
eetimes.com
Awesome 3D Electronic Sculptures
These little beauties are created using thousands of discrete components...
eetimes.com
Graphene Polymer Speeds Electron Transport
Depositing conducting polymers on graphene gives then highly desirable electrical...
eetimes.com
Vision Explosion Requires Mobile Architecture Rethink
CEVA's Eran Briman examines the explosion in vision processing and...
eetimes.com
ECC Brings Reliability and Power Efficiency to Mobile Devices
Error correcting code increases memory density and bandwidth while maintaining...
eetimes.com
Friday Quiz: Spectrum and Network Measurements
Wireless is everywhere, but not without spectral measurements....
eetimes.com
LTE-U for Small Cells Improves Wi-Fi Environment
In LTE-U, LTE technology over an unlicensed band is paired...
eetimes.com
Web Giants Dictate Road Maps
Big data centers such as Amazon, Google and Facebook are...
eetimes.com
IoT Terrain Still Shifting
The Internet of Things continues to fragment with competing networks...
eetimes.com
Infineon: CAN FD Success Goes at Expense of FlexRay
The faster version of the venerable CAN bus, CAN FD...
eetimes.com
Maker Faire Sydney – Trends in Hardware Innovation Fireside Chat
2014 Sydney Maker Faire Power House Museum 17/8/2014 Trends in...
eevblog.com
Apple's March 9 Event: Is It Time For The Apple Watch?
Apple fans and non-fans alike are waiting to "watch" what...
eetimes.com
Tessera Buys Smart Sensors for Iris Recognition
FotoNation Limited, a wholly owned subsidiary of chip packaging company...
eetimes.com
Hi-Speed Transistors from Liquid Processing
A University of Chicago lab has invented a new kind...
eetimes.com
An Appetizing Archive of Propitious & Pragmatic Resources
EE Times blogger Adam Taylor has created a website containing...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +