Quantcast SLOPE DETECTION

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-11 detecting device must be constructed so that its output amplitude will vary linearly according to the instantaneous frequency of the incoming signal. Several types of fm detectors have been developed and are in use, but in this section you will study three of the most common: (1) the phase-shift detector, (2) the ratio detector, and (3) the gated-beam detector. SLOPE DETECTION To be able to understand the principles of operation for fm detectors, you need to first study the simplest form of frequency-modulation detector, the SLOPE DETECTOR. The slope detector is essentially a tank circuit which is tuned to a frequency either slightly above or below the fm carrier frequency. View (A) of figure 3-9 is a plot of voltage versus frequency for a tank circuit. The resonant frequency of the tank is the frequency at point 4. Components are selected so that the resonant frequency is higher than the frequency of the fm carrier signal at point 2. The entire frequency deviation for the fm signal falls on the lower slope of the bandpass curve between points 1 and 3. As the fm signal is applied to the tank circuit in view (B), the output amplitude of the signal varies as its frequency swings closer to, or further from, the resonant frequency of the tank. Frequency variations will still be present in this waveform, but it will also develop amplitude variations, as shown in view (B). This is because of the response of the tank circuit as it varies with the input frequency. This signal is then applied to the diode detector in view (C) and the detected waveform is the output. This circuit has the major disadvantage that any amplitude variations in the rf waveform will pass through the tank circuit and be detected. This disadvantage can be eliminated by placing a limiter circuit before the tank input. (Limiter circuits were discussed in NEETS, Module 9, Introduction to Wave-Generation and Wave-Shaping Circuits.) This circuit is basically the same as an AM detector with the tank tuned to a higher or lower frequency than the received carrier. Figure 3-9A.—Slope detector. VOLTAGE VERSUS FREQUENCY PLOT. Figure 3-9B.—Slope detector. TANK CIRCUIT.


Electrical News
How Will Deep Learning Change SoCs?
Deep learning is changing the way computers see, hear and...
eetimes.com
EEVblog #728 – T4 LED Lighting
A quick rant on T4 fluorescent tubes, and a small...
eevblog.com
Integre Brings x1 HyperLink DSP to FPGA
Integre's IP core allows a user-defined system to communicate with...
eetimes.com
SanDisk Goes For Big Data Flash Market
InfiniFlash storage platform puts company in competition with customers and...
eetimes.com
March 28 is Arduino Day -- Break Out the Party Hats!
On 3/28/2015, the folks at SparkFun are offering up to...
eetimes.com
Four Steps to Field-Oriented Control -- The Final Two
Concluding Dave's series on implementing field-oriented control, he looks at...
eetimes.com
Why We Disagree with the IEEE's Patent Policy
The IEEE's new patent policy could slash royalty revenues and...
eetimes.com
Linux Seeks Security, Unity
Linux needs greater security, unity and interoperability to meet its...
eetimes.com
Friday Quiz: EE 101, Part 3
In this third installment from "Electrical Engineering 101," we look...
eetimes.com
Robotic Bacteria Senses Humidity
A bacterial spore studded with graphene quantum dots makes the...
eetimes.com
Teensy-Weensy GPAK4 Mixed Signal FPGAs
For embedded designers who aren't familiar with FPGAs, Silego's teensy-weensy...
eetimes.com
Vehicle Reliability Is Up, Especially in Powertrain
Some cars are more reliable than others, but even the...
eetimes.com
Convince Me Why I Should Care About VR
When I go to a conference and see bobble-headed enthusiasts...
eetimes.com
OFC: Transceiver Module Spec Prevents Mismatching
A keyed CDFP optical module prevents cables from being plugged...
eetimes.com
Single-Chip FPGA-Based Embedded Vision & Fusion Analytics Solutions
The idea here is to perform 'processing on the edge'...
eetimes.com
Micron, Intel Flash 3D NAND
Micron and Intel have co-developed a 3-D flash NAND chip...
eetimes.com
ESC Minneapolis 2015 Sneak Peek! Baking Pis in Africa
Do you want to hear tall tales of rafting the...
eetimes.com
The Art Of Electronics 3rd Edition
25 years in the making, the bible of electronics is...
eevblog.com
Patent Suits Have Global Impacts
Companies found guilty of patent infringement, even those under an...
eetimes.com
Nanolaser Enables On-Chip Photonics
\Researchers at the University of Washington and Stanford has created...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +