Quantcast The Reflex Klystron

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-13 The output of any klystron (regardless of the number of cavities used) is developed by velocity modulation of the electron beam. The electrons that are accelerated by the cathode pulse are acted upon by rf fields developed across the input and middle cavities. Some electrons are accelerated, some are decelerated, and some are unaffected. Electron reaction depends on the amplitude and polarity of the fields across the cavities when the electrons pass the cavity gaps. During the time the electrons are traveling through the drift space between the cavities, the accelerated electrons overtake the decelerated electrons to form bunches. As a result, bunches of electrons arrive at the output cavity at the proper instant during each cycle of the rf field and deliver energy to the output cavity. Only a small degree of bunching takes place within the electron beam during the interval of travel from the input cavity to the middle cavity. The amount of bunching is sufficient, however, to cause oscillations within the middle cavity and to maintain a large oscillating voltage across the input gap. Most of the velocity modulation produced in the three-cavity klystron is caused by the voltage across the input gap of the middle cavity. The high voltage across the gap causes the bunching process to proceed rapidly in the drift space between the middle cavity and the output cavity. The electron bunches cross the gap of the output cavity when the gap voltage is at maximum negative. Maximum energy transfer from the electron beam to the output cavity occurs under these conditions. The energy given up by the electrons is the kinetic energy that was originally absorbed from the cathode pulse. Klystron amplifiers have been built with as many as five intermediate cavities in addition to the input and output cavities. The effect of the intermediate cavities is to improve the electron bunching process which improves amplifier gain. The overall efficiency of the tube is also improved to a lesser extent. Adding more cavities is roughly the same as adding more stages to a conventional amplifier. The overall amplifier gain is increased and the overall bandwidth is reduced if all the stages are tuned to the same frequency. The same effect occurs with multicavity klystron tuning. A klystron amplifier tube will deliver high gain and a narrow bandwidth if all the cavities are tuned to the same frequency. This method of tuning is called SYNCHRONOUS TUNING. If the cavities are tuned to slightly different frequencies, the gain of the amplifier will be reduced but the bandwidth will be appreciably increased. This method of tuning is called STAGGERED TUNING. Q-15.   What can be added to the basic two-cavity klystron to increase the amount of velocity modulation and the power output? Q-16.   How is the electron beam of a three-cavity klystron accelerated toward the drift tube? Q-17.   Which cavity of a three-cavity klystron causes most of the velocity modulation? Q-18.   In a multicavity klystron, tuning all the cavities to the same frequency has what effect on the bandwidth of the tube? Q-19.   The cavities of a multicavity klystron are tuned to slightly different frequencies in what method of tuning? The Reflex Klystron Another tube based on velocity modulation, and used to generate microwave energy, is the REFLEX KLYSTRON (figure 2-9). The reflex klystron contains a REFLECTOR PLATE, referred to as the REPELLER, instead of the output cavity used in other types of klystrons. The electron beam is modulated as it was in the other types of klystrons by passing it through an oscillating resonant cavity, but here the similarity ends. The feedback required to maintain oscillations within the cavity is obtained by reversing the beam and sending it back through the cavity. The electrons in the beam are velocity-modulated before the beam passes through the cavity the second time and will give up the energy required to maintain


Electrical News
Wearables & IoT Boom Creates Supply Chain Challenges
Great ideas for new wearables or connected electronic devices can...
eetimes.com
ARM Extends Into IoT Software
ARM has announced plans for IoT device and cloud software...
eetimes.com
Oven Performance Shows Flip Side of Thermal Management
The standard, ubiquitous cooking oven is not only inefficient but...
eetimes.com
Tabula's DesignInsight Offers 100% Observability Into 3PLDs
It's not going too far to say that Tabula's DesignInsight...
eetimes.com
MediaTek May Narrow Qualcomm's Lead in China's 4G Market
MediaTek has a chance to narrow Qualcomm's lead in China's...
eetimes.com
EEVblog #669 – FLIR TG165 Thermal Imager Teardown
What’s inside the new FLIR TG165 Visual IR Thermometer /...
eevblog.com
Connected Car Takes Center Stage at CTIA
Reporting from Super Mobility Week, Steve Bell gives us insights...
eetimes.com
Microsoft Announces Windows 10
Microsoft execs emphasize the desktop UI, say Windows 10's final...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Robots Confront Safety Standards
An emerging crop of industrial robots will be more user-friendly...
eetimes.com
Electronic Brain by 2023
Progress continues on fake brain to be used as test...
eetimes.com
Google, Silicon Labs Mesh for ZigBee-Like Protocol
Google's Nest-led Thread Group is meeting at its campus in...
eetimes.com
Bionic Ear Due Soon
STMicroelectronics collaborates with two companies on a bionic ear that...
eetimes.com
Peek Into BMW's Ultimate Driving Museum
BMW Welt and BMW Museum, located next to BMW headquarters...
eetimes.com
New Common Parts Library Supports Connected Device Design
Online sourcing site Octopart inaugurates a Common Parts Library (CPL)...
eetimes.com
Altera Announces Non-Volatile MAX 10 FPGAs & Eval Kits
MAX 10 FPGAs are of interest for a broad range...
eetimes.com
LPDDR3 Is A Half-Step
The rapid evolution of smartphones drove the quick adoption of...
eetimes.com
IBM Conquers Wafer-Scale Graphene
IBM has found a way to vastly reduce the costs...
eetimes.com
Telecom Capex to Fall 2% in 2015
Telecom carriers are expected to shave their capital spending on...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +