Quantcast YAGI ANTENNAS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-39 Figure 4-32.—Yagi antenna. YAGI ANTENNAS.—An example of a multielement parasitic array is the YAGI ANTENNA (figure 4-32, views A and B). The spacings between the elements are not uniform. The radiation from the different elements arrives in phase in the forward direction, but out of phase by various amounts in the other directions. The director and the reflector in the Yagi antenna are usually welded to a conducting rod or tube at their centers. This support does not interfere with the operation of the antenna. Since the driven element is center-fed, it is not welded to the supporting rod. The center impedance can be increased by using a folded dipole as the driven element. The Yagi antenna shown in figure 4-32, view A, has three directors. In general, the greater number of parasitic elements used, the greater the gain. However, a greater number of such elements causes the array to have a narrower frequency response as well as a narrower beamwidth. Therefore, proper adjustment of the antenna is critical. The gain does not increase directly with the number of elements used. For example, a three-element Yagi array has a relative power gain of 5 dB. Adding another director results in a 2 dB increase. Additional directors have less and less effect. A typical Yagi array used for receiving and transmitting energy is shown with a support frame in figure 4-33. This antenna is used by the military services. It operates at frequencies of from 12 to 50 megahertz and consists of two separate arrays (one high-frequency and one low-frequency antenna array) mounted on one frame. The various elements are indicated in the figure. The high-frequency (hf) array consists of one reflector, one driven element, and two directors; the low-frequency (lf) array has the same arrangement with one less director. The lengths of the elements in the high-frequency array are shorter than those in the low-frequency array. The physical lengths of the elements in the individual arrays are equal, but the electrical lengths can be varied by means of the tuning stubs at the center of the elements. The array can be rotated in any desired direction by a remotely controlled, electrically driven, antenna rotator.


Electrical News
Friday Quiz: Voltage References
Voltage references are basic building blocks for ADCs and DACs,...
eetimes.com
Broadcom Flips on Future Set Tops
Broadcom is nestled between traditional cable companies and newer over...
eetimes.com
GaN Pumps Power Revolution
Gallium nitride is ramping up a revolution in power conversion,...
eetimes.com
Introducing USB Type-C -- USB for 21st Century Systems
Industry leaders are poised to start rolling out devices enabled...
eetimes.com
Chinese Walls and Back Doors
Qualcomm and U.S. industry are the losers as China's antitrust...
eetimes.com
Intel 5th Gen vPro Goes 60GHz Wireless
Intel has incorporated Pro Wireless Display (WiDi) and Wireless Docking...
eetimes.com
Backplanes Hit a Wall at 56G
Backplane-based systems are hitting a wall at 56 Gbit/second speeds,...
eetimes.com
Can Kevlar prevent lithium-ion battery fire risks?
University of Michigan researchers have used nanofibers extracted from Kevlar...
eetimes.com
The Art Of Electronics 3rd Edition is Almost Here!
Massive news! A new edition of the bible is almost...
eevblog.com
Wi-Fi Alliance Radiates Outward
The Wi-Fi Alliance is one of several industry groups grappling...
eetimes.com
Connected Car: Dramatic Growth Ahead
Market research and IT consultant firm Gartner predicts a dramatic...
eetimes.com
What Drove CES 2015 Innovation? IP and IP Subsystems
How do we manage all those blocks in an age...
eetimes.com
What Drove CES 2015 Innovation? IP and IP Subsystems
How do we manage all those blocks in an age...
eetimes.com
The Problem with Big Data
There is a lot of potential in Big Data, but...
eetimes.com
UMC Boosts Capex to Capture More 28nm Orders
UMC's large capex increase to capture more 28nm orders indicates...
eetimes.com
Moore's Law Cover Human Progress
Can a Moore's-like law be applied to anything? Where there...
eetimes.com
Quantum Entanglement Now On-a-Chip
Uncrackable encryption and quantum computers enabled by tiny 20 micron...
eetimes.com
Patent Law's Global Grey Areas
Patent law has unresolved grey areas when it comes to...
eetimes.com
TSVs to Split More Chips: Re-Integration is the Focus
At the 3D TSV summit, the speakers agreed on one...
eetimes.com
Startup Casts a Better IoT Network
Startup IoT Freeway claims it has a better wireless network...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +