Quantcast YAGI ANTENNAS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-39 Figure 4-32.—Yagi antenna. YAGI ANTENNAS.—An example of a multielement parasitic array is the YAGI ANTENNA (figure 4-32, views A and B). The spacings between the elements are not uniform. The radiation from the different elements arrives in phase in the forward direction, but out of phase by various amounts in the other directions. The director and the reflector in the Yagi antenna are usually welded to a conducting rod or tube at their centers. This support does not interfere with the operation of the antenna. Since the driven element is center-fed, it is not welded to the supporting rod. The center impedance can be increased by using a folded dipole as the driven element. The Yagi antenna shown in figure 4-32, view A, has three directors. In general, the greater number of parasitic elements used, the greater the gain. However, a greater number of such elements causes the array to have a narrower frequency response as well as a narrower beamwidth. Therefore, proper adjustment of the antenna is critical. The gain does not increase directly with the number of elements used. For example, a three-element Yagi array has a relative power gain of 5 dB. Adding another director results in a 2 dB increase. Additional directors have less and less effect. A typical Yagi array used for receiving and transmitting energy is shown with a support frame in figure 4-33. This antenna is used by the military services. It operates at frequencies of from 12 to 50 megahertz and consists of two separate arrays (one high-frequency and one low-frequency antenna array) mounted on one frame. The various elements are indicated in the figure. The high-frequency (hf) array consists of one reflector, one driven element, and two directors; the low-frequency (lf) array has the same arrangement with one less director. The lengths of the elements in the high-frequency array are shorter than those in the low-frequency array. The physical lengths of the elements in the individual arrays are equal, but the electrical lengths can be varied by means of the tuning stubs at the center of the elements. The array can be rotated in any desired direction by a remotely controlled, electrically driven, antenna rotator.


Electrical News
Are We Ready to Give Up Driving?
In a Strategy Analytics survey, 40% of Americans said they...
eetimes.com
Broadcom Cuts 2,500 jobs
Broadcom announced plans to cut 2,500 jobs, 20% of its...
eetimes.com
AMS, Dialog Merger Talks Fail
Talks over a possible merger of mixed-signal chip companies AMS...
eetimes.com
The Risks & Rewards of Early Tapeout
Verification remains a key issue in system-on-chip development. The time...
eetimes.com
Nikola Tesla, Vincent Van Gogh & the Second Renaissance
Tesla was alive at the same time as Vincent! Both...
eetimes.com
Future of PCM: Optoelectronic?
Work by a team at the University of Oxford and...
eetimes.com
Mobile Uptick Ahead, Says ARM
Mobile device shipments are rebounding from a slump, but challenges...
eetimes.com
EEVblog #643 – Mailbag
Mailbag Monday Spoilers: Dual voltage source selection circuit Casio FX-7000G...
eevblog.com
Nvidia Raises Android Gaming Ante
The Nvidia Tegra K1 inside the Xaomi MiPad and now...
eetimes.com
Learn Signal Integrity Online
Signal-integrity evangelist Eric Bogatin's classes are now available through an...
eetimes.com
25G Ethernet on Tap at IEEE
In the wake of a June launch for an industry...
eetimes.com
NAND Suit: Toshiba Seeks $1.1B From SK Hynix
South Korea's SK Hynix Inc. disclosed in a regulatory filing...
eetimes.com
Cloud-Based Chip Design Research & Education
Semiconductor Research and Silicon Cloud give chip designers global reach....
eetimes.com
Is Your Processor IP ISO 26262-Compliant?
With the growth in ADAS and the growing demand for...
eetimes.com
NI's System-on-Module Technology Aims to Reshape Embedded Market
National Instruments has just released a complete middleware solution for...
eetimes.com
XMOS Sees Key $26M Investment
UK chip designer XMOS has raised $26.2m from three global...
eetimes.com
VC Investments Spike in Q2
US companies posted double-digit increases in second-quarter investments from a...
eetimes.com
5G Calling: US Answers, Sorta
In the third and final part of our series on...
eetimes.com
Engineers Should Study Finance: 5 Reasons Why
Engineers make design decisions that affect the company bottom line,...
eetimes.com
EEVblog #642 – TI Connected Launchpad
Dave checks out the $20 TI EK-TM4C1294XL Tiva C Series...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +