Quantcast TERMINATING A TRANSMISSION LINE

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-38 Q24.   In figure 3-27, which waveforms on the left have a resultant wave of zero, and what is indicated by these waves? Q25.   On an open-ended transmission line, the voltage is always zero at what distance from each end of the line? TERMINATING A TRANSMISSION LINE A transmission line is either NONRESONANT or RESONANT. First, let us define the terms nonresonant lines and resonant lines. A nonresonant line is a line that has no standing waves of current and voltage. A resonant line is a line that has standing waves of current and voltage. Nonresonant Lines A nonresonant line is either infinitely long or terminated in its characteristic impedance. Since no reflections occur, all the energy traveling down the line is absorbed by the load which terminates the line. Since no standing waves are present, this type of line is sometimes spoken of as a FLAT line. In addition, because the load impedance of such a line is equal to Z0, no special tuning devices are required to effect a maximum power transfer; hence, the line is also called an UNTUNED line. Resonant Lines A resonant line has a finite length and is not terminated in its characteristic impedance. Therefore reflections of energy do occur. The load impedance is different from the Z0 of the line; therefore, the input impedance may not be purely resistive but may have reactive components. Tuning devices are used to eliminate the reactance and to bring about maximum power transfer from the source to the line. Therefore, a resonant line is sometimes called a TUNED line. The line also may be used for a resonant or tuned circuit. A resonant line is sometimes said to be resonant at an applied frequency. This means that at one frequency the line acts as a resonant circuit. It may act either as a high-resistive circuit (parallel resonant) or as a low-resistive circuit (series resonant). The line may be made to act in this manner by either open- or short-circuiting it at the output end and cutting it to some multiple of a quarter-wavelength. At the points of voltage maxima and minima on a short-circuited or open-circuited line, the line impedance is resistive. On a short-circuited line, each point at an odd number of quarter-wavelengths from the receiving end has a high impedance (figure 3-31, view A). If the frequency of the applied voltage to the line is varied, this impedance decreases as the effective length of the line changes. This variation is exactly the same as the change in the impedance of a parallel-resonant circuit when the applied frequency is varied.


Electrical News
Silicon Photonics Acquires Key Subsystems
Silicon photonics will someday replace the expensive gallium arsenide photonics...
eetimes.com
Apollo 11 Inspired Generations of Innovators
Neil and Buzz were on the moon. Orbiting above, there...
eetimes.com
Smartwatches Suck, Says Pebble Backer
There are only two significant platforms in the smartwatch arena...
eetimes.com
Future Engineers: Don't 'Trip Up' on Your College Road Trip
A future engineering student gives his advice on making the...
eetimes.com
Future Engineers: Don't 'Trip Up' on Your College Road Trip
A future engineering student gives his advice on making the...
eetimes.com
DARPA's Chip Office Reboots to Tackle Cost & Complexity
DARPA's Microelectronics Technology Office, the source of much chip innovation...
eetimes.com
Mentor Launches Xpedition PCB Data Management Solution
The new Xpedition data management solution will ensure flow-wide PCB...
eetimes.com
Juggling a Cornucopia of Projects
Max is juggling so many hobby projects that it's no...
eetimes.com
Develop & Share Open-Source Hardware Projects
Matlab and Simulink are finding use in projects that don't...
eetimes.com
Android Open-Source for ARMv8-A Starts 64-Bit Avalanche
Mobile devices will need a big boost in processing power...
eetimes.com
Find an Entrepreneurial Mentor
As Luke had his Yoda, so does a startup CEO...
eetimes.com
Are We Ready to Give Up Driving?
In a Strategy Analytics survey, 40% of Americans said they...
eetimes.com
Broadcom Cuts 2,500 jobs
Broadcom announced plans to cut 2,500 jobs, 20% of its...
eetimes.com
AMS, Dialog Merger Talks Fail
Talks over a possible merger of mixed-signal chip companies AMS...
eetimes.com
The Risks & Rewards of Early Tapeout
Verification remains a key issue in system-on-chip development. The time...
eetimes.com
Nikola Tesla, Vincent Van Gogh & the Second Renaissance
Tesla was alive at the same time as Vincent! Both...
eetimes.com
Future of PCM: Optoelectronic?
Work by a team at the University of Oxford and...
eetimes.com
Mobile Uptick Ahead, Says ARM
Mobile device shipments are rebounding from a slump, but challenges...
eetimes.com
EEVblog #643 – Mailbag
Mailbag Monday Spoilers: Dual voltage source selection circuit Casio FX-7000G...
eevblog.com
Nvidia Raises Android Gaming Ante
The Nvidia Tegra K1 inside the Xaomi MiPad and now...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +