Quantcast TERMINATING A TRANSMISSION LINE

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-38 Q24.   In figure 3-27, which waveforms on the left have a resultant wave of zero, and what is indicated by these waves? Q25.   On an open-ended transmission line, the voltage is always zero at what distance from each end of the line? TERMINATING A TRANSMISSION LINE A transmission line is either NONRESONANT or RESONANT. First, let us define the terms nonresonant lines and resonant lines. A nonresonant line is a line that has no standing waves of current and voltage. A resonant line is a line that has standing waves of current and voltage. Nonresonant Lines A nonresonant line is either infinitely long or terminated in its characteristic impedance. Since no reflections occur, all the energy traveling down the line is absorbed by the load which terminates the line. Since no standing waves are present, this type of line is sometimes spoken of as a FLAT line. In addition, because the load impedance of such a line is equal to Z0, no special tuning devices are required to effect a maximum power transfer; hence, the line is also called an UNTUNED line. Resonant Lines A resonant line has a finite length and is not terminated in its characteristic impedance. Therefore reflections of energy do occur. The load impedance is different from the Z0 of the line; therefore, the input impedance may not be purely resistive but may have reactive components. Tuning devices are used to eliminate the reactance and to bring about maximum power transfer from the source to the line. Therefore, a resonant line is sometimes called a TUNED line. The line also may be used for a resonant or tuned circuit. A resonant line is sometimes said to be resonant at an applied frequency. This means that at one frequency the line acts as a resonant circuit. It may act either as a high-resistive circuit (parallel resonant) or as a low-resistive circuit (series resonant). The line may be made to act in this manner by either open- or short-circuiting it at the output end and cutting it to some multiple of a quarter-wavelength. At the points of voltage maxima and minima on a short-circuited or open-circuited line, the line impedance is resistive. On a short-circuited line, each point at an odd number of quarter-wavelengths from the receiving end has a high impedance (figure 3-31, view A). If the frequency of the applied voltage to the line is varied, this impedance decreases as the effective length of the line changes. This variation is exactly the same as the change in the impedance of a parallel-resonant circuit when the applied frequency is varied.


Electrical News
The Circle – The Future's Imperfect in the Present Tense
Dystopian novel satirizes mega-Google companies and the modern techie ethos....
eetimes.com
Friday Quiz: S-Parameters
S-Parameters are no longer just for microwave engineers. High-speed digital...
eetimes.com
EEVblog #694 – Mailbag
Mailbag that’s not on a Monday, because Dave has been...
eevblog.com
So Much To Do, So Little Time
2015 will likely be the year of widespread awareness and...
eetimes.com
What Does It Take to Truly Leapfrog With Technology?
In January 2015, Lindsay Craig will be teaching technology workshops...
eetimes.com
Recommended Reads From the Engineer's Bookshelf
Are you wondering what to buy your family and friends...
eetimes.com
Successful With Phones & Drones, Parrot Ponders Farming
Parrot is a 20-year-old startup that has the passion of...
eetimes.com
Power Week: Popular Gaming Consoles' Energy Use Compared
Just in time for the holidays, engineers at the Electric...
eetimes.com
Make This Engineering Museum a Reality
Help turn the first house to have a telephone into...
eetimes.com
Industrial IoT Framework Near
The Industrial Internet Consortium plans to finish a reference architecture...
eetimes.com
Sony's Debuts Smartglasses Module
Following up on prototypes demonstrated earlier this year, Sony has...
eetimes.com
MIT Discovers Superconductor Law
The Massachusetts Institute of Technology has discovered a law governing...
eetimes.com
Top Robot Stories of 2014
Robots have fascinated us for centuries, but now we are...
eetimes.com
ESIstream vs. JESD204B for Ultra-High-Speed Chip-Chip Communications
The open ESIstream protocol has less encoding overhead and higher...
eetimes.com
Vote for the Engineer of the Year
Finalists announced, survey below. The award, sponsored by National Instruments,...
eetimes.com
Want a Voltera Desktop PCB Printer?
Who amongst us wouldn't want the ability to create PCBs...
eetimes.com
11 Views of IEDM
This week's International Electron Devices Meeting inspired new hope for...
eetimes.com
AMD Gives RF Mico Exec Ops Job
AMD has hired James A. Clifford as its senior vice...
eetimes.com
Infineon & UMC Extend Manufacturing Pact Into Auto ICs
German chipmaker will partner with Taiwanese foundry to manufacture power...
eetimes.com
EEVblog #693 – AVO Transistor Analyser Teardown
Dave tears down a 1962 vintage AVO Transistor Analyser. Service...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +