• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
REFLECTION OF AC VOLTAGE FROM AN OPEN CIRCUIT
Figure 3-27.Instantaneous values of incident and reflected waves on an open-ended line

Neets Module 10-Introduction to Wave Propagation, Transmission Lines, and Antennas
Page Navigation
  122    123    124    125    126  127  128    129    130    131    132  
3-33 instantaneous peak amplitude that is equal to the sum of the peak amplitudes of the incident and reflected waves. Since most indicating instruments are unable to separate these voltages, they show the vector sum. An oscilloscope is usually used to study the instantaneous voltages on rf lines. Since two waves of voltage are moving on the line, you need to know how to distinguish between the two. The voltages moving toward the receiving end are called INCIDENT VOLTAGES, and the whole waveshape is called the INCIDENT WAVE. The wave moving back to the sending end after reflection is called the REFLECTED WAVE. The resultant voltage curve (view B of figure 3-26) shows that the voltage is maximum at the end of the line, a condition that occurs across an open circuit. Another step in investigating the open-circuited rf line is to see how the current waves act. The incident current wave is the solid line in figure 3-26, view C. The voltage is represented by the dotted line. The current is in phase with the voltage while traveling toward the receiving end. At the end of the line, the current is reflected in the opposite polarity; that is, it is shifted 180 degrees in phase, but its amplitude remains the same. The reflected wave of current is shown by dashed lines in view C. The heavy-line curve represents the sum of the two instantaneous currents and is the resultant wave. Notice that current is zero at the end of the line. This is reasonable, since there can be no current flow through an open circuit. Views B and C of figure 3-26 show the voltage and current distribution along a transmission line at a point about 1/8 after a maximum voltage or current reaches the end of the line. Since the instantaneous values are continuously changing during the generation of a complete cycle, a large number of these pictures are required to show the many different relationships. Figure 3-27 shows the incident and reflected waveshapes at several different times. The diagrams in the left column of figure 3-27 (representing voltage) show the incident wave and its reflection without change in polarity. In figure 3-27, waveform (1), the incident wave and the reflected wave are added algebraically to produce the resultant wave indicated by the heavy line. In waveform (2), a zero point preceding the negative-going cycle of the incident wave is at the end of the line. The reflected wave and incident wave are 180 degrees out of phase at all points. (The reflected wave is the positive cycle that just preceded the negative cycle now approaching the end of the line.) The resultant of the incident and UHIOHFWHG ZDYHV LV ]HUR DW DOO SRLQWV DORQJ WKH OLQH  ,Q ZDYHIRUP      WKH ZDYHV KDYH PRYHG        DORQJ WKH line; the incident wave has moved 45 degrees to the right, and the reflected wave has moved 45 degrees to the left. The resultant voltage, shown by the heavy line, has a maximum negative at the end of the line DQG D PD[LPXP SRVLWLYH        IURP WKH HQG RI WKH OLQH






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.