Quantcast Effect of Frequency on Capacitive Reactance

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-4 Figure 1-2.—Effect of frequency on inductive reactance. Effect of Frequency on Capacitive Reactance In an a.c. circuit, a capacitor produces a reactance which causes the current to lead the voltage by 90 degrees. Because the capacitor "reacts" to a changing voltage, it is known as a reactive component. The opposition a capacitor presents to a.c. is called capacitive reactance (XC). The opposition is caused by the capacitor "reacting" to the changing voltage of the a.c. source. The formula for capacitive reactance is: In contrast to the inductive reactance, this equation indicates that the CAPACITIVE REACTANCE VARIES INVERSELY WITH THE FREQUENCY. When f = 0, XC is infinite ( ) and decreases as frequency increases. That is, the lower the frequency, the greater the capacitive reactance; the higher the frequency, the less the reactance for a given capacitor. As shown in figure 1-3, the effect of capacitance is opposite to that of inductance. Remember, capacitance causes the current to lead the voltage by 90 degrees, while inductance causes the current to lag the voltage by 90 degrees.


Electrical News
EEVblog #728 – T4 LED Lighting
A quick rant on T4 fluorescent tubes, and a small...
eevblog.com
Integre Brings x1 HyperLink DSP to FPGA
Integre's IP core allows a user-defined system to communicate with...
eetimes.com
SanDisk Goes For Big Data Flash Market
InfiniFlash storage platform puts company in competition with customers and...
eetimes.com
March 28 is Arduino Day -- Break Out the Party Hats!
On 3/28/2015, the folks at SparkFun are offering up to...
eetimes.com
Four Steps to Field-Oriented Control -- The Final Two
Concluding Dave's series on implementing field-oriented control, he looks at...
eetimes.com
Why We Disagree with the IEEE's Patent Policy
The IEEE's new patent policy could slash royalty revenues and...
eetimes.com
Linux Seeks Security, Unity
Linux needs greater security, unity and interoperability to meet its...
eetimes.com
Friday Quiz: EE 101, Part 3
In this third installment from "Electrical Engineering 101," we look...
eetimes.com
Robotic Bacteria Senses Humidity
A bacterial spore studded with graphene quantum dots makes the...
eetimes.com
Teensy-Weensy GPAK4 Mixed Signal FPGAs
For embedded designers who aren't familiar with FPGAs, Silego's teensy-weensy...
eetimes.com
Vehicle Reliability Is Up, Especially in Powertrain
Some cars are more reliable than others, but even the...
eetimes.com
Convince Me Why I Should Care About VR
When I go to a conference and see bobble-headed enthusiasts...
eetimes.com
OFC: Transceiver Module Spec Prevents Mismatching
A keyed CDFP optical module prevents cables from being plugged...
eetimes.com
Single-Chip FPGA-Based Embedded Vision & Fusion Analytics Solutions
The idea here is to perform 'processing on the edge'...
eetimes.com
Micron, Intel Flash 3D NAND
Micron and Intel have co-developed a 3-D flash NAND chip...
eetimes.com
ESC Minneapolis 2015 Sneak Peek! Baking Pis in Africa
Do you want to hear tall tales of rafting the...
eetimes.com
The Art Of Electronics 3rd Edition
25 years in the making, the bible of electronics is...
eevblog.com
Patent Suits Have Global Impacts
Companies found guilty of patent infringement, even those under an...
eetimes.com
Nanolaser Enables On-Chip Photonics
\Researchers at the University of Washington and Stanford has created...
eetimes.com
DARPA Robotics Challenge Gears Up For Finale
The latest highlights from DARPA's years-long robotics competition show us...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +