Quantcast BANDWIDTH OF AN AMPLIFIER - 14180_55

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-3 Figure 2-1.—Frequency response curve of audio amplifier. Notice in the figure that the lower frequency limit is labeled f1 and the upper frequency limit is labeled f2. Note also the portion inside the frequency-response curve marked "BANDWIDTH." You may be wondering just what a "bandwidth" is. BANDWIDTH OF AN AMPLIFIER The bandwidth represents the amount or "width" of frequencies, or the "band of frequencies," that the amplifier is MOST effective in amplifying. However, the bandwidth is NOT the same as the band of frequencies that is amplified. The bandwidth (BW) of an amplifier is the difference between the frequency limits of the amplifier. For example, the band of frequencies for an amplifier may be from 10 kilohertz (10 kHz) to 30 kilohertz (30 kHz). In this case, the bandwidth would be 20 kilohertz (20 kHz). As another example, if an amplifier is designed to amplify frequencies between 15 hertz (15 Hz) and 20 kilohertz (20 kHz), the bandwidth will be equal to 20 kilohertz minus 15 hertz or 19,985 hertz (19,985 Hz). This is shown in figure 2-1. Mathematically: You should notice on the figure that the frequency-response curve shows output voltage (or current) against frequency. The lower and upper frequency limits (f1 and f2) are also known as HALF-POWER POINTS. The half-power points are the points at which the output voltage (or current) is 70.7 percent of the maximum output voltage (or current). Any frequency that produces less than 70.7 percent of the maximum output voltage (or current) is outside the bandwidth and, in most cases, is not considered a useable output of the amplifier. The reason these points are called "half-power points" is that the true output power will be half (50 percent) of the maximum true output power when the output voltage (or current) is 70.7 percent of the maximum output voltage (or current), as shown below. (All calculations are rounded off to two decimal places.) As you learned in NEETS, Module 2, in an a.c. circuit true power is calculated using the resistance (R) of the circuit, NOT the impedance (Z). If the circuit produces a maximum output voltage of 10 volts across a 50-ohm load, then:


Electrical News
Tesla Model S – Australian Test Drive
Dave test drives one of the first right hand drive...
eevblog.com
What Apple Stuffed Inside iPhone 6 Plus
The iPhone 6 Plus packs a host of new tech...
eetimes.com
Secure WiFi Shield for Arduino Platforms
The Arduino Wi-Fi Shield 101 is designed to enable rapid...
eetimes.com
Digital Level Shifting
Do you need to take your signals to the next...
eetimes.com
Steve Wozniak Reacts to Latest iPhone
Being presented with his very own iCups communications system certainly...
eetimes.com
Five Challenges to FPGA-Based Prototyping
The state-of-the-art has progressed spectacularly since early forays into FPGA-based...
eetimes.com
Q'comm Does Watches, Glasses, Robots
Qualcomm showed design wins in smartwatches, VR glasses, and robots...
eetimes.com
Making The Internet of Things 'Easy Stupid'
IoT companies need to provide a positive user experience that...
blog.designersofthings.com
Cars Made to Order at Retail
Local Motors' sporty 3D-printed car, looking like licorice on wheels,...
eetimes.com
Friday Quiz: Units of Measurement
The ways we express units of measurement should be perfectly...
eetimes.com
Nvidia's Maxwell Lights Up Voxels
Nvidia's Maxwell, its new high-end graphics processor, opens up a...
eetimes.com
Backlash Coming on Car-to-Car Talk?
Vehicle-to-vehicle communications will be mandated in the US, but public...
eetimes.com
Training Opportunities Abound at ARM TechCon
ARM TechCon is only a few weeks away, and if...
eetimes.com
10 Top Video Parodies on User Interfaces
There have been some interesting videos of "user interface parodies"...
eetimes.com
Making Wearables Personal
Wearables should be as unique as the person who wears...
blog.designersofthings.com
Elastomeric Camouflage Switches Texture & Color
Inspired by nature's most skillful camouflage artists, MIT researchers harness...
eetimes.com
Infographic: A History of Wearable Tech
Take a stroll down wearable memory lane in this great...
blog.designersofthings.com
18 Views of the Silicon Horizon
Semiconductors are poised for high single-digit growth this year and...
eetimes.com
Power Week: Did We Just Avoid an 'Electric Armageddon?'
While a powerful solar storm this past week resulted only...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +