Quantcast LONG-WIRE ANTENNA

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-41 LONG-WIRE ANTENNA A LONG-WIRE ANTENNA is an antenna that is a wavelength or longer at the operating frequency. In general, the gain achieved with long-wire antennas is not as great as the gain obtained from the multielement arrays studied in the previous section. But the long-wire antenna has advantages of its own. The construction of long-wire antennas is simple, both electrically and mechanically, with no particularly critical dimensions or adjustments. The long-wire antenna will work well and give satisfactory gain and directivity over a frequency range up to twice the value for which it was cut. In addition, it will accept power and radiate it efficiently on any frequency for which its overall length is not less than approximately 1/2 wavelength. Another factor is that long-wire antennas have directional patterns that are sharp in both the horizontal and vertical planes. Also, they tend to concentrate the radiation at the low vertical angles. Another type of long-wire antenna is the BEVERAGE ANTENNA, also called a WAVE ANTENNA. It is a horizontal, long-wire antenna designed especially for the reception and transmission of low-frequency, vertically polarized ground waves. It consists of a single wire, two or more wavelengths long, supported 3 to 6 meters above the ground, and terminated in its characteristic impedance, as shown in figure 4-34. Figure 4-34.—Beverage antenna. Q44.   To radiate power efficiently, a long-wire antenna must have what minimum overall length? Q45.   What is another name for the Beverage antenna? V ANTENNA A V ANTENNA is a bi-directional antenna used widely in military and commercial communications. It consists of two conductors arranged to form a V. Each conductor is fed with currents of opposite polarity. The V is formed at such an angle that the main lobes reinforce along the line bisecting the V and make a very effective directional antenna (see figure 4-35). Connecting the two-wire feed line to the apex of the V and exciting the two sides of the V 180 degrees out of phase cause the lobes to add along the line of the bisector and to cancel in other directions, as shown in figure 4-36. The lobes are designated 1, 2, 3, and 4 on leg AA', and 5, 6, 7, and 8 on leg BB'. When the proper angle between AA' and BB' is chosen, lobes 1 and 4 have the same direction and combine with lobes 7 and 6, respectively. This combination of two major lobes from each leg results in the formation of two stronger lobes, which lie along an imaginary line bisecting the enclosed angle. Lobes 2, 3, 5, and 8 tend to cancel each other, as do the smaller lobes, which are approximately at right angles to the wire legs of the V. The resultant waveform pattern is shown at the right of the V antenna in figure 4-36.


Electrical News
How Will Deep Learning Change SoCs?
Deep learning is changing the way computers see, hear and...
eetimes.com
EEVblog #728 – T4 LED Lighting
A quick rant on T4 fluorescent tubes, and a small...
eevblog.com
Integre Brings x1 HyperLink DSP to FPGA
Integre's IP core allows a user-defined system to communicate with...
eetimes.com
SanDisk Goes For Big Data Flash Market
InfiniFlash storage platform puts company in competition with customers and...
eetimes.com
March 28 is Arduino Day -- Break Out the Party Hats!
On 3/28/2015, the folks at SparkFun are offering up to...
eetimes.com
Four Steps to Field-Oriented Control -- The Final Two
Concluding Dave's series on implementing field-oriented control, he looks at...
eetimes.com
Why We Disagree with the IEEE's Patent Policy
The IEEE's new patent policy could slash royalty revenues and...
eetimes.com
Linux Seeks Security, Unity
Linux needs greater security, unity and interoperability to meet its...
eetimes.com
Friday Quiz: EE 101, Part 3
In this third installment from "Electrical Engineering 101," we look...
eetimes.com
Robotic Bacteria Senses Humidity
A bacterial spore studded with graphene quantum dots makes the...
eetimes.com
Teensy-Weensy GPAK4 Mixed Signal FPGAs
For embedded designers who aren't familiar with FPGAs, Silego's teensy-weensy...
eetimes.com
Vehicle Reliability Is Up, Especially in Powertrain
Some cars are more reliable than others, but even the...
eetimes.com
Convince Me Why I Should Care About VR
When I go to a conference and see bobble-headed enthusiasts...
eetimes.com
OFC: Transceiver Module Spec Prevents Mismatching
A keyed CDFP optical module prevents cables from being plugged...
eetimes.com
Single-Chip FPGA-Based Embedded Vision & Fusion Analytics Solutions
The idea here is to perform 'processing on the edge'...
eetimes.com
Micron, Intel Flash 3D NAND
Micron and Intel have co-developed a 3-D flash NAND chip...
eetimes.com
ESC Minneapolis 2015 Sneak Peek! Baking Pis in Africa
Do you want to hear tall tales of rafting the...
eetimes.com
The Art Of Electronics 3rd Edition
25 years in the making, the bible of electronics is...
eevblog.com
Patent Suits Have Global Impacts
Companies found guilty of patent infringement, even those under an...
eetimes.com
Nanolaser Enables On-Chip Photonics
\Researchers at the University of Washington and Stanford has created...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +