Quantcast LONG-WIRE ANTENNA

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-41 LONG-WIRE ANTENNA A LONG-WIRE ANTENNA is an antenna that is a wavelength or longer at the operating frequency. In general, the gain achieved with long-wire antennas is not as great as the gain obtained from the multielement arrays studied in the previous section. But the long-wire antenna has advantages of its own. The construction of long-wire antennas is simple, both electrically and mechanically, with no particularly critical dimensions or adjustments. The long-wire antenna will work well and give satisfactory gain and directivity over a frequency range up to twice the value for which it was cut. In addition, it will accept power and radiate it efficiently on any frequency for which its overall length is not less than approximately 1/2 wavelength. Another factor is that long-wire antennas have directional patterns that are sharp in both the horizontal and vertical planes. Also, they tend to concentrate the radiation at the low vertical angles. Another type of long-wire antenna is the BEVERAGE ANTENNA, also called a WAVE ANTENNA. It is a horizontal, long-wire antenna designed especially for the reception and transmission of low-frequency, vertically polarized ground waves. It consists of a single wire, two or more wavelengths long, supported 3 to 6 meters above the ground, and terminated in its characteristic impedance, as shown in figure 4-34. Figure 4-34.—Beverage antenna. Q44.   To radiate power efficiently, a long-wire antenna must have what minimum overall length? Q45.   What is another name for the Beverage antenna? V ANTENNA A V ANTENNA is a bi-directional antenna used widely in military and commercial communications. It consists of two conductors arranged to form a V. Each conductor is fed with currents of opposite polarity. The V is formed at such an angle that the main lobes reinforce along the line bisecting the V and make a very effective directional antenna (see figure 4-35). Connecting the two-wire feed line to the apex of the V and exciting the two sides of the V 180 degrees out of phase cause the lobes to add along the line of the bisector and to cancel in other directions, as shown in figure 4-36. The lobes are designated 1, 2, 3, and 4 on leg AA', and 5, 6, 7, and 8 on leg BB'. When the proper angle between AA' and BB' is chosen, lobes 1 and 4 have the same direction and combine with lobes 7 and 6, respectively. This combination of two major lobes from each leg results in the formation of two stronger lobes, which lie along an imaginary line bisecting the enclosed angle. Lobes 2, 3, 5, and 8 tend to cancel each other, as do the smaller lobes, which are approximately at right angles to the wire legs of the V. The resultant waveform pattern is shown at the right of the V antenna in figure 4-36.


Electrical News
EEVblog #646 – Gravity Detection Using A Frequency Counter!
Did you know you can use your frequency counter to...
eevblog.com
Creating an 8x8x8 3D LED Cube: Testing the RGB LEDs
Creating an 8x8x8 3D tri-color LED cube from the ground...
eetimes.com
Massive Job Cuts: Dark Clouds Over Lighting Business
Amid the decline of conventional illuminants like incandescent bulbs and...
eetimes.com
Next-Gen HiFi Competition Takes Place in the Car
Car radio? Old school. Infotainment? Better. Now the next generation...
eetimes.com
No More Dialup: Grandpa Gets DSL
We all talk about needing multi-megabit-per-second home Internet, but not...
eetimes.com
Ushering in Big-Data & Giga-Scale Design Challenges
Giga-scale designs are moving from traditional FastSPICE applications to new...
eetimes.com
Kid-Friendly Science Museums We Love
In summer, parents find themselves groping for the perfect spot...
eetimes.com
Pi in the Sky Over New York
Residents of the five boroughs (and even that far away...
eetimes.com
Tesla Gets Its First Android Wear Smartwatch App
The car of the future, Tesla, just got even cooler...
eetimes.com
IBM Breaks EUV Throughput Record
An ASML NXE3300B extreme ultraviolet scanner exposed 637 wafers in...
eetimes.com
Fist Bumps & the Zombie Apocalypse
A fist bump transmits about 1/20th of the pathogens as...
eetimes.com
Google Opens Google Glass Basecamps
Google has set up three basecamps to help long-term Explorers,...
eetimes.com
25G Ethernet Looks Back to Future
The chairman of the group that set 40 and 100...
eetimes.com
Introducing FPGA-Based Acceleration for High-Frequency Trading
Handling market data is of highest merit and demands the...
eetimes.com
GM's Powermat Deal Falls Short
General Motors recently announced that it will include multimode wireless...
eetimes.com
Repurposing an FM Radio Chip for an RC Submarine Receiver Project
Adam is currently working on a 75MHz receiver for his...
eetimes.com
IoT Spec Taps Internet Protocol
The IPSO Alliance will release a reference architecture for an...
eetimes.com
Micron Makes Monolithic 8GB DDR3
Using a 25 nm manufacturing process, Micron has created a...
eetimes.com
Memory System Design Methods
Are you working with DDR4? Interested in NVDIMMs? Designing at...
eetimes.com
Makimoto's Wave Revisited for Multicore SoC Design
So predictable was the cycle of standardization and customization in...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +