Quantcast SEMICONDUCTOR THEORY

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-5 with over a thousand volts applied to its plate whereas the maximum allowable voltage for a transistor is limited to about 200 volts (usually 50 volts or less). A tube can also handle thousands of watts of power. The maximum power output for transistor generally ranges from 30 milliwatts to slightly over 100 watts. When it comes to ruggedness and life expectancy, the tube is still in competition. Design and functional requirements usually dictate the choice of device. However, semiconductor devices are rugged and long-lived. They can be constructed to withstand extreme vibration and mechanical shock. They have been known to withstand impacts that would completely shatter an ordinary electron tube. Although some specially designed tubes render extensive service, the life expectancy of transistors is better than three to four times that of ordinary electronic tubes. There is no known failure mechanism (such as an open filament in a tube) to limit the semiconductor’s life. However, semiconductor devices do have some limitations. They are usually affected more by temperature, humidity, and radiation than tubes are. Q3.   Name three of the largest users of semiconductor devices. Q4.   State one requirement of an electron tube, which does not exist for semiconductors, that makes the tube less efficient than the semiconductor. SEMICONDUCTOR THEORY To understand why solid-state devices function as they do, we will have to examine closely the composition and nature of semiconductors. This entails theory that is fundamental to the study of solid- state devices. Rather than beginning with theory, let’s first become reacquainted with some of the basic information you studied earlier concerning matter and energy (NEETS, Module 1). ATOMIC STRUCTURE The universe, as we know it today, is divided into two parts: matter and energy. Matter, which is our main concern at this time, is anything that occupies space and has weight. Rocks, water, air, automobiles, clothing, and even our own bodies are good examples of matter. From this, we can conclude that matter may be found in any one of three states: SOLIDS, LIQUIDS, and GASES. All matter is composed of either an element or combination of elements. As you know, an element is a substance that cannot be reduced to a simpler form by chemical means. Examples of elements with which you are in contact everyday are iron, gold, silver, copper, and oxygen. At present, there are over 100 known elements of which all matter is composed. As we work our way down the size scale, we come to the atom, the smallest particle into which an element can be broken down and still retain all its original properties. The atoms of one element, however, differ from the atoms of all other elements. Since there are over 100 known elements, there must be over 100 different atoms, or a different atom for each element. Now let us consider more than one element at a time. This brings us to the term "compound." A compound is a chemical combination of two or more elements. Water, table salt, ethyl alcohol, and ammonia are all examples of compounds. The smallest part of a compound, which has all the characteristics of the compound, is the molecule. Each molecule contains some of the atoms of each of the elements forming the compound. Consider sugar, for example. Sugar in general terms is matter, since it occupies space and has weight. It is also a compound because it consists of two or more elements. Take a lump of sugar and crush


Electrical News
Chinese Walls and Back Doors
Qualcomm and U.S. industry are the losers as China's antitrust...
eetimes.com
Intel 5th Gen vPro Goes 60GHz Wireless
Intel has incorporated Pro Wireless Display (WiDi) and Wireless Docking...
eetimes.com
Backplanes Hit a Wall at 56G
Backplane-based systems are hitting a wall at 56 Gbit/second speeds,...
eetimes.com
The Art Of Electronics 3rd Edition is Almost Here!
Massive news! A new edition of the bible is almost...
eevblog.com
Wi-Fi Alliance Radiates Outward
The Wi-Fi Alliance is one of several industry groups grappling...
eetimes.com
Connected Car: Dramatic Growth Ahead
Market research and IT consultant firm Gartner predicts a dramatic...
eetimes.com
What Drove CES 2015 Innovation? IP and IP Subsystems
How do we manage all those blocks in an age...
eetimes.com
What Drove CES 2015 Innovation? IP and IP Subsystems
How do we manage all those blocks in an age...
eetimes.com
The Problem with Big Data
There is a lot of potential in Big Data, but...
eetimes.com
UMC Boosts Capex to Capture More 28nm Orders
UMC's large capex increase to capture more 28nm orders indicates...
eetimes.com
Moore's Law Cover Human Progress
Can a Moore's-like law be applied to anything? Where there...
eetimes.com
Quantum Entanglement Now On-a-Chip
Uncrackable encryption and quantum computers enabled by tiny 20 micron...
eetimes.com
Patent Law's Global Grey Areas
Patent law has unresolved grey areas when it comes to...
eetimes.com
TSVs to Split More Chips: Re-Integration is the Focus
At the 3D TSV summit, the speakers agreed on one...
eetimes.com
Startup Casts a Better IoT Network
Startup IoT Freeway claims it has a better wireless network...
eetimes.com
Open Office: Your Fart is My Problem
Open offices are the future. What a shame....
eetimes.com
Open Office: Your Fart is My Problem
Open offices are the future. What a shame....
eetimes.com
Configuration Tools Simplify MCU Setup
Graphical tools supporting developers in configuring complex MCU peripheral sets...
eetimes.com
Is Freescale Out of the Woods?
Freescale Semiconductor, burdened by large debt repayments since it was...
eetimes.com
EEVblog #709 – EDC 4601 AC Voltage Standard Teardown
Dave does some performance checks and then tears down a...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +