Quantcast Plate Resistance (Rp)

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-16 You can see from the analysis that the most consistent control of plate current takes place over the linear portion of the Ep - Ip curve. In most applications, electron tubes are operated in this linear portion of the characteristic curve. Plate Resistance (Rp) One tube parameter that can be calculated from values on the Ep - Ip curve is known as plate resistance, abbreviated as Rp. In a properly designed electron tube, there is no physical resistor between cathode and plate; that is, the electrons do not pass through a resistor in arriving at the plate. You may have wondered, however, why the variable dc voltage source of figure 1-12 didn’t blow a fuse. Doesn’t the plate circuit appear to be a short circuit-a circuit without a load to limit the current? The fact is, there is a very real, effective RESISTANCE between cathode and plate. It is not lumped in a resistor, but the circuit may be analyzed as if it is. The plate resistance of a given tube, Rp, can be calculated by applying Ohm’s law to the values of Ep and Ip. Figure 1-14 is a typical diode Ep - Ip curve. The plate resistance has been figured for Rp under three different conditions, as follows: Figure 1-14.—The Ep - I characteristic curve for a diode. Remember that 1 mA = .001 ampere; therefore 40 mA =.040 ampere. Solution: The other two indicated values of Rp were figured in the same way.


Electrical News
D-PHY, M-PHY & C-PHY? First Look at Testing MIPI's Latest PHY
One of the significant advantages of MIPI Alliance standards is...
eetimes.com
Homeless in Silicon Valley
Over Labor Day, I thought about the situation for the...
eetimes.com
Wireless Net Takes the Next Train
The first products are about to adopt the new 802.15.4p...
eetimes.com
EEVblog #659 – Medical Plugpack Teardown
What’s inside an IEC60601-1 medical class 5V mains DC-DC plugpack?...
eevblog.com
Ethernet Links Go Green
Everything that uses energy uses too much if it. Energy...
eetimes.com
Android Wear: Where Are the Wares
Here are examples of some of the watches that use...
eetimes.com
Intel Wearables Contest Goes New Age
Emotional prosthetics, modular smartbands and sixth sense necklaces make up...
eetimes.com
EEVblog #658 – Mailbag
Mailbag Monday. Dave opens his mail Spoilers: Keithley 177 Multimeter...
eevblog.com
EEVblog #657 – Maker Faire 2014 Interviews
Some interviews from the 2014 Sydney Mini Maker Faire at...
eevblog.com
The Internet of Things Versus Slumlords
Smart thermostats are not only for the well-to-do. One group...
eetimes.com
IBM Watson Speeds Drug Research
IBM Watson moves from supplying known answers to tough questions...
eetimes.com
Samsung Funds III-V FinFETs in US Lab
Samsung is funding Penn State researchers working to fabricate III-V...
eetimes.com
LG, Samsung Debut Smartwatches, Apple Lurks
LG's G Watch R and Samsung's Gear S do little...
eetimes.com
Imagination Takes On Raspberry Pi
Imagination Technologies has developed its own version of Raspberry Pi,...
eetimes.com
California Smartphone Kill-Switch Law: What It Means
Do you understand the consequences of California's new smartphone anti-theft...
eetimes.com
9 Insights From Hot Interconnects
Facebook described its network switch, while experts picked apart flaws...
eetimes.com
Microchip in Pursuit of CSR
Microchip confirmed Thursday that it has had preliminary mutual discussions...
eetimes.com
Are There Marsquakes on Mars?
A 2016 mission will investigate the stuff under the surface...
eetimes.com
Friday Quiz: Forgotten T&M Companies
Remember the names of these test-equipment companies? Most are long...
eetimes.com
Rohm Opens MEMS Foundry Operation
Rohm Co. Ltd. created a foundry business at the six-inch...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +