Quantcast MOSFET TESTING

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-25 N-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be equal (in the 100- to 10,000-ohm range), regardless of the meter lead polarity. Connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure the resistance between the gate and the source. Both readings should indicate a low resistance and be approximately the same. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate to the drain; then measure the resistance between the gate and the source. Both readings should show infinity. P-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be the same (100 to 10,000 ohms), regardless of meter lead polarity. Next, connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should show infinity. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should indicate a low resistance and be approximately equal. MOSFET TESTING Another type of semiconductor you should become familiar with is the metal oxide semiconductor field-effect transistor (MOSFET), as shown in figures 2-19 and 2-20. You must be extremely careful when working with MOSFETs because of their high degree of sensitivity to static voltages. As previously mentioned in this chapter, the soldering iron should be grounded. A metal plate should be placed on the workbench and grounded to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should also wear a bracelet with an attached ground strap and ground yourself to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should not allow a MOSFET to come into contact with your clothing, plastics, or cellophane-type materials. A vacuum plunger (solder sucker) must not be used because of the high electrostatic charges it can generate. Solder removal by wicking is recommended. It is also good practice to wrap MOSFETs in metal foil when they are out of a circuit. To ensure MOSFET safety under test, use a portable volt-ohm-milliammeter (vom) to make MOSFET resistance measurements. A vtvm must never be used in testing MOSFETs. You must be aware that while you are testing a MOSFET, you are grounded to the ship’s hull or station’s ground. Use of a vtvm would cause a definite safety hazard because of the 115-volt, 60-hertz power input. When the resistance measurements are complete and the MOSFET is properly stored, unground both the plate on the workbench and yourself. You will understand MOSFET testing better if you visualize it as equivalent to a circuit using diodes and resistors, as shown in figures 2-21 and 2-22.


Electrical News
Road to Auto Market Paved With Fault-Tolerant SoCs
Data protection and redundancy features implemented across entire SoC designs...
eetimes.com
Boston-Area Engineers to Share Expertise at ESC Boston 2015
In an exciting new session format at ESC Boston 2015,...
eetimes.com
Memory Design Trends in 2014
Memory transitions, increased-density drive design trends: Customers are looking for...
eetimes.com
True 3-D Chips Harness Nanotubes
Stanford University has learned how to stack any number of...
eetimes.com
Top 15 Analog, MEMS & Sensors News From 2014
From faulty MEMS mics to NXP's labor disputes, here are...
eetimes.com
Space Weather Satellite Set for Launch
NOAA's Deep Space Climate Observatory will serve as an early...
eetimes.com
Hackers Go Off-Grid for Power
Hackathon produces designs that could be assembled by villagers with...
eetimes.com
Ten Hot & Cool NASA Innovations
Partnering with industry, NASA has developed new technologies that are...
eetimes.com
The Circle – The Future's Imperfect in the Present Tense
Dystopian novel satirizes mega-Google companies and the modern techie ethos....
eetimes.com
Friday Quiz: S-Parameters
S-Parameters are no longer just for microwave engineers. High-speed digital...
eetimes.com
EEVblog #694 – Mailbag
Mailbag that’s not on a Monday, because Dave has been...
eevblog.com
So Much To Do, So Little Time
2015 will likely be the year of widespread awareness and...
eetimes.com
What Does It Take to Truly Leapfrog With Technology?
In January 2015, Lindsay Craig will be teaching technology workshops...
eetimes.com
Recommended Reads From the Engineer's Bookshelf
Are you wondering what to buy your family and friends...
eetimes.com
Successful With Phones & Drones, Parrot Ponders Farming
Parrot is a 20-year-old startup that has the passion of...
eetimes.com
Power Week: Popular Gaming Consoles' Energy Use Compared
Just in time for the holidays, engineers at the Electric...
eetimes.com
Make This Engineering Museum a Reality
Help turn the first house to have a telephone into...
eetimes.com
Industrial IoT Framework Near
The Industrial Internet Consortium plans to finish a reference architecture...
eetimes.com
Sony's Debuts Smartglasses Module
Following up on prototypes demonstrated earlier this year, Sony has...
eetimes.com
MIT Discovers Superconductor Law
The Massachusetts Institute of Technology has discovered a law governing...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +