Quantcast MOSFET TESTING

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-25 N-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be equal (in the 100- to 10,000-ohm range), regardless of the meter lead polarity. Connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure the resistance between the gate and the source. Both readings should indicate a low resistance and be approximately the same. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate to the drain; then measure the resistance between the gate and the source. Both readings should show infinity. P-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be the same (100 to 10,000 ohms), regardless of meter lead polarity. Next, connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should show infinity. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should indicate a low resistance and be approximately equal. MOSFET TESTING Another type of semiconductor you should become familiar with is the metal oxide semiconductor field-effect transistor (MOSFET), as shown in figures 2-19 and 2-20. You must be extremely careful when working with MOSFETs because of their high degree of sensitivity to static voltages. As previously mentioned in this chapter, the soldering iron should be grounded. A metal plate should be placed on the workbench and grounded to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should also wear a bracelet with an attached ground strap and ground yourself to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should not allow a MOSFET to come into contact with your clothing, plastics, or cellophane-type materials. A vacuum plunger (solder sucker) must not be used because of the high electrostatic charges it can generate. Solder removal by wicking is recommended. It is also good practice to wrap MOSFETs in metal foil when they are out of a circuit. To ensure MOSFET safety under test, use a portable volt-ohm-milliammeter (vom) to make MOSFET resistance measurements. A vtvm must never be used in testing MOSFETs. You must be aware that while you are testing a MOSFET, you are grounded to the ship’s hull or station’s ground. Use of a vtvm would cause a definite safety hazard because of the 115-volt, 60-hertz power input. When the resistance measurements are complete and the MOSFET is properly stored, unground both the plate on the workbench and yourself. You will understand MOSFET testing better if you visualize it as equivalent to a circuit using diodes and resistors, as shown in figures 2-21 and 2-22.


Electrical News
Tabula Set for March Shutdown
Programmable logic company Tabula is rumored to be closing its...
eetimes.com
Sony Joins FDSOI Club
Sony Corp. revealed that the company's next-generation Global Navigation Satellite...
eetimes.com
Hardware Emulation: One Verification Tool, Unending Possibilities
Verification Consultant Lauro Rizzatti explains why hardware emulation really is...
eetimes.com
Belichick's 'DeflateGate' Explanation Falls Flat on Technical Details
Was football's Belichick making sense when describing relationship between temperature...
eetimes.com
DesignCon Shows Off Best in Test
DesignCon award ceremony showcases best chip, board, system-level products excelling...
eetimes.com
Feast Your Orbs on My Vetinari Clock Prototype
Things are really starting to come together with regard to...
eetimes.com
FPGA Debug Goes Outside with New Hardware
For 10 years, Belgium company Byte Paradigm has operated as...
eetimes.com
Qualcomm Outlook Exposes 5 Trouble Spots
Although Qualcomm showed strong Q1 results, the company -- facing...
eetimes.com
Rambus Readies Lensless Image Sensor Platform
Intellectual property licensor Rambus is going to provide a "platform"...
eetimes.com
Friday Quiz: Voltage References
Voltage references are basic building blocks for ADCs and DACs,...
eetimes.com
Supercapbatteries, Thermoelectrics to Power Future Cars
The cars of the future will be powered by supercabatteries...
eetimes.com
Broadcom Flips on Future Set Tops
Broadcom is nestled between traditional cable companies and newer over...
eetimes.com
GaN Pumps Power Revolution
Gallium nitride is ramping up a revolution in power conversion,...
eetimes.com
Introducing USB Type-C -- USB for 21st Century Systems
Industry leaders are poised to start rolling out devices enabled...
eetimes.com
Chinese Walls and Back Doors
Qualcomm and U.S. industry are the losers as China's antitrust...
eetimes.com
Intel 5th Gen vPro Goes 60GHz Wireless
Intel has incorporated Pro Wireless Display (WiDi) and Wireless Docking...
eetimes.com
Backplanes Hit a Wall at 56G
Backplane-based systems are hitting a wall at 56 Gbit/second speeds,...
eetimes.com
Can Kevlar prevent lithium-ion battery fire risks?
University of Michigan researchers have used nanofibers extracted from Kevlar...
eetimes.com
Successful Standards Marry Tech with Business
Karen Bartleson discusses the sometimes unwelcome standards process and how...
eetimes.com
The Art Of Electronics 3rd Edition is Almost Here!
Massive news! A new edition of the bible is almost...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +