Quantcast MOSFET TESTING

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-25 N-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be equal (in the 100- to 10,000-ohm range), regardless of the meter lead polarity. Connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure the resistance between the gate and the source. Both readings should indicate a low resistance and be approximately the same. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate to the drain; then measure the resistance between the gate and the source. Both readings should show infinity. P-Channel Test Using an ohmmeter set to the R 100 scale, measure the resistance between the drain and the source; then reverse the ohmmeter leads and take another reading. Both readings should be the same (100 to 10,000 ohms), regardless of meter lead polarity. Next, connect the positive meter lead to the gate. Using the negative lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should show infinity. Disconnect the positive lead from the gate and connect the negative lead to the gate. Using the positive lead, measure the resistance between the gate and the drain; then measure it between the gate and the source. Both readings should indicate a low resistance and be approximately equal. MOSFET TESTING Another type of semiconductor you should become familiar with is the metal oxide semiconductor field-effect transistor (MOSFET), as shown in figures 2-19 and 2-20. You must be extremely careful when working with MOSFETs because of their high degree of sensitivity to static voltages. As previously mentioned in this chapter, the soldering iron should be grounded. A metal plate should be placed on the workbench and grounded to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should also wear a bracelet with an attached ground strap and ground yourself to the ship’s hull through a 250-kilohm to 1-megohm resistor. You should not allow a MOSFET to come into contact with your clothing, plastics, or cellophane-type materials. A vacuum plunger (solder sucker) must not be used because of the high electrostatic charges it can generate. Solder removal by wicking is recommended. It is also good practice to wrap MOSFETs in metal foil when they are out of a circuit. To ensure MOSFET safety under test, use a portable volt-ohm-milliammeter (vom) to make MOSFET resistance measurements. A vtvm must never be used in testing MOSFETs. You must be aware that while you are testing a MOSFET, you are grounded to the ship’s hull or station’s ground. Use of a vtvm would cause a definite safety hazard because of the 115-volt, 60-hertz power input. When the resistance measurements are complete and the MOSFET is properly stored, unground both the plate on the workbench and yourself. You will understand MOSFET testing better if you visualize it as equivalent to a circuit using diodes and resistors, as shown in figures 2-21 and 2-22.


Electrical News
Develop & Share Open-Source Hardware Projects
Matlab and Simulink are finding use in projects that don't...
eetimes.com
Android Open-Source for ARMv8-A Starts 64-Bit Avalanche
Mobile devices will need a big boost in processing power...
eetimes.com
Find an Entrepreneurial Mentor
As Luke had his Yoda, so does a startup CEO...
eetimes.com
Are We Ready to Give Up Driving?
In a Strategy Analytics survey, 40% of Americans said they...
eetimes.com
Broadcom Cuts 2,500 jobs
Broadcom announced plans to cut 2,500 jobs, 20% of its...
eetimes.com
AMS, Dialog Merger Talks Fail
Talks over a possible merger of mixed-signal chip companies AMS...
eetimes.com
The Risks & Rewards of Early Tapeout
Verification remains a key issue in system-on-chip development. The time...
eetimes.com
Nikola Tesla, Vincent Van Gogh & the Second Renaissance
Tesla was alive at the same time as Vincent! Both...
eetimes.com
Future of PCM: Optoelectronic?
Work by a team at the University of Oxford and...
eetimes.com
Mobile Uptick Ahead, Says ARM
Mobile device shipments are rebounding from a slump, but challenges...
eetimes.com
EEVblog #643 – Mailbag
Mailbag Monday Spoilers: Dual voltage source selection circuit Casio FX-7000G...
eevblog.com
Nvidia Raises Android Gaming Ante
The Nvidia Tegra K1 inside the Xaomi MiPad and now...
eetimes.com
Learn Signal Integrity Online
Signal-integrity evangelist Eric Bogatin's classes are now available through an...
eetimes.com
25G Ethernet on Tap at IEEE
In the wake of a June launch for an industry...
eetimes.com
NAND Suit: Toshiba Seeks $1.1B From SK Hynix
South Korea's SK Hynix Inc. disclosed in a regulatory filing...
eetimes.com
Cloud-Based Chip Design Research & Education
Semiconductor Research and Silicon Cloud give chip designers global reach....
eetimes.com
Is Your Processor IP ISO 26262-Compliant?
With the growth in ADAS and the growing demand for...
eetimes.com
NI's System-on-Module Technology Aims to Reshape Embedded Market
National Instruments has just released a complete middleware solution for...
eetimes.com
XMOS Sees Key $26M Investment
UK chip designer XMOS has raised $26.2m from three global...
eetimes.com
VC Investments Spike in Q2
US companies posted double-digit increases in second-quarter investments from a...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +