Quantcast CAPACITOR MEASUREMENTS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-15 DIFFERENTIAL VOLTMETERS It is a seldom-known fact that the Fluke 893 ac-dc differential voltmeter can be used for measuring extremely high resistances from 10 megohms to 106 megohms with a typical accuracy of 5%. This measurement method, however, requires some basic calculations on your part. The obvious advantage of the differential voltmeter is its capability of measuring extremely high resistances. Consult the Fluke 893 technical manual for initial switch settings and a more detailed explanation of its operation. CAPACITOR MEASUREMENTS Capacitance is that property of a circuit that produces an electrostatic field when two conducting bodies separated by a dielectric material have a potential applied to them. Capacitors are made by compressing an insulating material (dielectric) between two conductors (plates). The farad is the basic measurement of capacitance. It is dependent upon the area of the plates, the distance between the plates, and the type of dielectric used. Electrically, the farad is a measure of 1 coulomb of potential charged by 1 volt. A coulomb (the amount of current flow maintained at 1 ampere that passes a given point of a circuit in 1 second) is a large charge. Most capacitors are measured in millionths of a farad (microfarad), expressed as F, or in one-millionth of a microfarad (picofarad), expressed as pF. Capacitors incur various losses as a result of such factors as resistance in the conductors (plates) or leads, current leakage, and dielectric absorption, all of which affect the power factor of the capacitor. Theoretically, the power factor of an ideal capacitor should be zero; however, the losses listed above cause the power factors of practical capacitors to range from near 0 to a possible 100%. The average power factor for good capacitors, excluding electrolytics, is 2% to 3%. Current leakage, which is an inverse function of frequency, is important only at the lower frequencies and becomes negligible at higher frequencies. Dielectric absorption (sometimes referred to as dielectric viscosity) results in losses that produce heat. The effect of this type of loss is the same as resistance in series with the capacitor. You have probably learned the hard way that some capacitors can retain a charge long after the voltage has been removed. The electrical charge retained by capacitors in de-energized electronic circuits is, in many cases, sufficient to cause a lethal shock. Be sure you and those working with you consider this hazard before performing any type of maintenance on any electrical or electronic circuit and before making connections to a seemingly dead circuit. Use extreme caution prior to working on or near de- energized circuits that employ large capacitors. Be safe—discharge and ground all high-voltage capacitors and exposed high-voltage terminal leads by using only an authorized shorting probe, as shown in figure 1-11. Repeat discharge operations several times to make sure that all high-voltage terminations are completely discharged. It is of the utmost importance that you use only an authorized safety shorting probe to discharge the circuits before performing any work on them. An authorized general-purpose safety shorting probe for naval service application may be requisitioned using the current stock number listed in the ELECTRONICS INSTALLATION AND MAINTENANCE BOOK (EIBM), General NAVSEA 0967-LP-000-0100, Section 3, Safety Equipment. Certain electronic equipment are provided with built-in, special-purpose safety shorting probes. These probes are not considered general purpose. Use them only with the equipment for which they are provided and only in a manner specified by the technical manuals for the equipment. It is considered to be poor practice to remove them for use elsewhere.


Electrical News
Friday Quiz: Oscilloscopes
So, you use an oscilloscope every day? Well then, you...
eetimes.com
Inventables X-Carve LIVE Build Part 3 + Batteriser Rant
Part 3 of Dave & David2 assembling the Inventables X-Carve...
eevblog.com
Inventables X-Carve Time Lapse Build
Time lapse footage of Dave & David 2 assembled the...
eevblog.com
Samsung's Slippage Stirs Smartphone Angst
Samsung's downbeat outlook is stirring up worries over the global...
eetimes.com
Patents: Exercises in Futility and Incomprehensibility?
Learning anything from patent documents has to be one of...
eetimes.com
The Best Way to Store Morse Code in C
In which we compare two approaches to store and manipulate...
eetimes.com
Test is not someone else's problem
You can reduce production time and cost if you create...
eetimes.com
NXP Touts Mixed Signal, Auto Gains
NXP Semiconductors' financial results for the second quarter of 2015...
eetimes.com
Graphene Lights Up Chips
A group of national and international researchers have demonstrated an...
eetimes.com
Independent Board Members: The Outsiders With an "In"
Being a member of the board of a hot young...
eetimes.com
Mythbusters Tests Killer Drones
See what the team on Discovery Communications' TV series Mythbusters...
eetimes.com
CERN Taps Brocade For SDN
The legendary particle physics lab will use Brocade's OpenDaylight-based SDN...
eetimes.com
Agile Design for Hardware, Part II
In the second of a three-part series, two Berkeley professors...
eetimes.com
Smarter Sensor Hub Cuts Power
QuickLogic has a new sensor hub Eos, named after the...
eetimes.com
Windows 10 Mobile: Why Microsoft Is Confident
Windows 10 for smartphones is essentially feature complete, says Microsoft,...
eetimes.com
Samsung SE370 Monitor Boasts Wireless Charging Capability
No stranger to innovative products, Samsung launches the SE370 monitor,...
eetimes.com
EEVblog #773 – 80W INDUAL LED Light Teardown
Teardown of the new INDUAL 80W industrial LED high bay...
eevblog.com
eBook Explains Faster In-System Flash Programming
"Faster Flash Programming via FPGA and IJTAG" from ASSET Intertech...
eetimes.com
Quantum Computing: Diode-like Breakthrough Surmounts Roadblock
Quantum computers need a component like a diode, that only...
eetimes.com
There's No Shame in ReRAM
Intel and Micron say they've developed a new class of...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +