• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
TROUBLESHOOTING SYNCHRO SYSTEMS
Figure 1-45.Simple blown fuse indicator

Neets Module 15-Principles of Synchros, Servos, and Gyros
Page Navigation
  50    51    52    53    54  55  56    57    58    59    60  
1-55 Trouble in a synchro system that has been in operation for some time is usually one of two types. First, the interconnecting synchro wiring often passes through a number of switches; at these points opens, shorts, or grounds may occur. You will be expected to trace down these troubles with an ohmmeter. You can find an open easily by checking for continuity between two points. Similarly, you can find a ground by checking the resistance between the suspected point and ground. A reading of zero ohms means that the point in question is grounded. Secondly, the synchro itself may become defective, due to opens and shorts in the windings, bad bearings, worn slip rings, or dirty brushes. You can do nothing about these defects except replace the synchro. Troubles in new and modified synchro systems are most often because of (1) improper wiring and (2) misalignment caused by synchros not being zeroed. You are responsible for finding and correcting these troubles. You can check for improper wiring with an ohmmeter by making a point-to-point continuity and resistance check. You can correct misalignment of a synchro system by rezeroing the entire system. TROUBLE INDICATORS When trouble occurs in an electronic installation that contains a large number of synchro systems, it may be very difficult to isolate the trouble to one particular system. Since it is vital that maintenance personnel locate the point of trouble and fix it in as short a time as possible, indicators, which aid in locating the trouble quickly, are included in the equipment. These indicators are usually signal lights, mounted on a central control board and connected to the different synchro systems. When trouble occurs in a synchro system, the signal light connected to it may either light or flash. Maintenance personnel identify the defective system by reading the name or number adjacent to the light. Signal lights indicate either overload conditions or blown fuses. Overload indicators are usually placed in the stator circuit of a torque synchro system because the stator circuit gives a better indication of mechanical loading than does the current in the rotor circuit. One version of this type of indicator, as shown in figure 1-44, consists of a neon lamp connected across the stator leads of a synchro system by two transformers. The primaries, consisting of a few turns of heavy wire, are in series with two of the stator leads; the secondaries, consisting of many turns of fine wire, are in series with the lamp. The turns ratios are designed so that when excess current flows through the stator windings, the neon lamp lights. For example, when the difference in rotor positions exceeds about 18º, the lamp lights, indicating that the load on the motor shaft is excessive. Figure 1-44.—Overload stator current indicator. Blown fuse indicators are front panel lights which light when a protective fuse in series with the rotor blows. Figure 1-45 shows a typical blown fuse indicator. If excessive current flows in the rotor windings of this circuit because of a short or severe mechanical overload, one of the fuses will blow and the neon lamp across the fuse will light.






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.