1-37In this first step, B cannot be subtracted from 7, so you take a borrow of 10_{16} from the next highervalue column. Add the borrow to the 7 in the minuend; then subtract (17_{16} minus B_{16} equals C_{16}). Reducethe number from which the borrow was taken (3) by 1.To subtract 4_{16} from 2_{16} also requires a borrow, as shown below:Borrow 10_{16} from the A and reduce the minuend by 1. Add the borrow to the 2 and subtract 4_{16} from12_{16}. The difference is E.When solved the problem looks like this:Remember that the borrow is 10_{16} not 10_{10}.There may be times when you need to borrow from a column that has a 0 in the minuend. In thatcase, you borrow from the next highest value column, which will provide you with a value in the 0column that you can borrow from.To subtract A from 7, you must borrow. To borrow you must first borrow from the 2. The 0 becomes10_{16}, which can give up a borrow. Reduce the 10_{16} by 1 to provide a borrow for the 7. Reducing 10_{16} by 1equals F. Subtracting A_{16} from 17_{16} gives you D_{16}. Bring down the 1 and F for a difference of 1FD_{16}.Now let’s practice what we’ve learned by solving the following hex subtraction problems: