Quantcast PARALLEL ADDERS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-8 When A, B, and the carry-in are all HIGH, a sum of 1 and a carry-out are produced. First, consider A and B. When both are HIGH, the output of gate 1 is LOW, and the output of gate 2 is HIGH, giving us a carry-out at gate 5. The carry-in produces a 1 output at gate 3, giving us a sum of 1. The output of the full adder is 112. The sum of 12 plus 12 plus 12 is 112. PARALLEL ADDERS The adders discussed in the previous section have been limited to adding single-digit binary numbers and carries. The largest sum that can be obtained using a full adder is 112. Parallel adders let us add multiple-digit numbers. If we place full adders in parallel, we can add two- or four-digit numbers or any other size desired. Figure 3-9 uses STANDARD SYMBOLS to show a parallel adder capable of adding two, two-digit binary numbers. In previous discussions we have depicted circuits with individual logic gates shown. Standard symbols (blocks) allow us to analyze circuits with inputs and outputs only. One standard symbol may actually contain many and various types of gates and circuits. The addend would be input on the A inputs (A2 = MSD, A1 = LSD), and the augend input on the B inputs (B2 = MSD, B1  = LSD). For this explanation we will assume there is no input to C0 (carry from a previous circuit). Figure 3-9. —Parallel binary adder. Now let’s add some two-digit numbers. To add 102 (addend) and 012 (augend), assume there are numbers at the appropriate inputs. The addend inputs will be 1 on A2 and 0 on A1. The augend inputs will be 0 on B2 and 1 on B1. Working from right to left, as we do in normal addition, let’s calculate the outputs of each full adder. With A1 at 0 and B1 at 1, the output of adder 1 will be a sum (S1) of 1 with no carry (C1). Since A2 is 1 and B2 is 0, we have a sum (S2) of 1 with no carry (C2) from adder 1. To determine the sum, read the outputs (C2, S 2, and S1) from left to right. In this case, C2 = 0, S2 = 1, and S1 = 1. The sum, then, of 102 and 012 is 0112  or 112. To add 112 and 012, assume one number is applied to A1 and A2, and the other to B1 and B2, as shown in figure 3-10. Adder 1 produces a sum (S1) of 0 and a carry (C1) of 1. Adder 2 gives us a sum (S2)


Electrical News
Integre Brings x1 HyperLink DSP to FPGA
Integre's IP core allows a user-defined system to communicate with...
eetimes.com
SanDisk Goes For Big Data Flash Market
InfiniFlash storage platform puts company in competition with customers and...
eetimes.com
March 28 is Arduino Day -- Break Out the Party Hats!
On 3/28/2015, the folks at SparkFun are offering up to...
eetimes.com
Four Steps to Field-Oriented Control -- The Final Two
Concluding Dave's series on implementing field-oriented control, he looks at...
eetimes.com
Why We Disagree with the IEEE's Patent Policy
The IEEE's new patent policy could slash royalty revenues and...
eetimes.com
Linux Seeks Security, Unity
Linux needs greater security, unity and interoperability to meet its...
eetimes.com
Friday Quiz: EE 101, Part 3
In this third installment from "Electrical Engineering 101," we look...
eetimes.com
Robotic Bacteria Senses Humidity
A bacterial spore studded with graphene quantum dots makes the...
eetimes.com
Teensy-Weensy GPAK4 Mixed Signal FPGAs
For embedded designers who aren't familiar with FPGAs, Silego's teensy-weensy...
eetimes.com
Vehicle Reliability Is Up, Especially in Powertrain
Some cars are more reliable than others, but even the...
eetimes.com
Convince Me Why I Should Care About VR
When I go to a conference and see bobble-headed enthusiasts...
eetimes.com
OFC: Transceiver Module Spec Prevents Mismatching
A keyed CDFP optical module prevents cables from being plugged...
eetimes.com
Single-Chip FPGA-Based Embedded Vision & Fusion Analytics Solutions
The idea here is to perform 'processing on the edge'...
eetimes.com
Micron, Intel Flash 3D NAND
Micron and Intel have co-developed a 3-D flash NAND chip...
eetimes.com
ESC Minneapolis 2015 Sneak Peek! Baking Pis in Africa
Do you want to hear tall tales of rafting the...
eetimes.com
The Art Of Electronics 3rd Edition
25 years in the making, the bible of electronics is...
eevblog.com
Patent Suits Have Global Impacts
Companies found guilty of patent infringement, even those under an...
eetimes.com
Nanolaser Enables On-Chip Photonics
\Researchers at the University of Washington and Stanford has created...
eetimes.com
DARPA Robotics Challenge Gears Up For Finale
The latest highlights from DARPA's years-long robotics competition show us...
eetimes.com
Core Independent MCUs Come to Power Management
Using redundant sets of key power management functions, Microchip has...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +