Quantcast Figure 2-52.Block diagram of quantizer and pcm coder.

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-52 Figure 2-52.—Block diagram of quantizer and pcm coder. The pcm demodulator will reproduce the correct standard amplitude represented by the pulse-code group. However, it will reproduce the correct standard only if it is able to recognize correctly the presence or absence of pulses in each position. For this reason, noise introduces no error at all if the signal-to-noise ration is such that the largest peaks of noise are not mistaken for pulses. When the noise is random (circuit and tube noise), the probability of the appearance of a noise peak comparable in amplitude to the pulses can be determined. This probability can be determined mathematically for any ration of signal-to-average- noise power. When this is done for 10 5 pulses per second, the approximate error rate for three values of signal power to average noise power is: 17 dB — 10 errors per second 20 dB — 1 error every 20 minutes 22 dB — 1 error every 2,000 hours Above a threshold of signal-to-noise ration of approximately 20 dB, virtually no errors occur. In all other systems of modulation, even with signal-to-noise ratios as high as 60 dB, the noise will have some effect. Moreover, the pcm signal can be retransmitted, as in a multiple relay link system, as many times as desired, without the introduction of additional noise effects; that is, noise is not cumulative at relay stations as it is with other modulation systems. The system does, of course, have some distortion introduced by quantizing the signal. Both the standard values selected and the sampling interval tend to make the reconstructed wave depart from the original. This distortion, called QUANTIZING NOISE, is initially introduced at the quantizing and coding modulator and remains fixed throughout the transmission and retransmission processes. Its magnitude can be reduced by making the standard quantizing levels closer together. The relationship of the quantizing noise to the number of digits in the binary code is given by the following standard relationship: Where: n is the number of digits in the binary code


Electrical News
HMC Spec Update Signals Healthy Adoption
The release of the Hybrid Memory Cube specification 2.0, along...
eetimes.com
Power Week: Si-Based Power Discretes to Continue to Dominate Over Next Decade
Discrete power electronics are predicted to become a $23 billion...
eetimes.com
Book Review: Deadly Odds by Allen Wyler
This is a great read that will have you on...
eetimes.com
Supercapacitors: A New Hero in the Spotlight
Today's supercapacitors are being used to replace rechargeable batteries in...
eetimes.com
EEVblog #687 – EFTPOS PIN Pad Terminal Teardown
What’s inside a smart card pinpad EFTPOS terminal? Dave looks...
eevblog.com
Your Part in the Recovery
Engineers and innovators are central to the slow but ongoing...
eetimes.com
Motor Controllers Offer Improved Noise Immunity
Operating at 5V gives these digital signal controllers enhanced noise...
eetimes.com
NXP to Pick Up Its Missing IoT Link - Bluetooth Low Energy
In pursuit of the Internet of Things market, NXP Semiconductors...
eetimes.com
USB Oscilloscopes Get Beta Drivers for Open-Source Hardware
Pico Technology has released beta versions of drivers for BeagleBoneBlack...
eetimes.com
It's Alive! The 3D Printing of Living Tissues
Within a generation, we likely will not just hear of...
eetimes.com
Curiosity Killed the Cat (Just Call Me Mr. Curiosity)
Max desperately needs a cat deterrent, but how should this...
eetimes.com
Memory Design Articles: Diagnostics, Datacenters & Failures
Here's a roundup of recent design articles that are relevant...
eetimes.com
Megachips to Launch DSP-Based Sensor Fusion IC
The growing sensor-fusion controller market for smartphones and wearable devices...
eetimes.com
MediaTek Plans $49 Million Investment in China's Chip Fund
Taiwan's largest chip designer has announced it will invest $48.9...
eetimes.com
Reduce Noise When Making M-PHY Measurements
To make useful measurements on M-PHY Gear 3, you need...
eetimes.com
EEVblog #686 – Mailbag
A monster sized high definition 50fps Mailbag, with two special...
eevblog.com
Startup to Open Source Parallel CPU
Rex Computing plans a parallel processor that could deliver a...
eetimes.com
OCZ Cuts Into Read-Intensive SSD Segment
The SATA-based Saber 1000 Series is yet another option in...
eetimes.com
Infotainment Systems Drive Automotive SSD Adoption
In-vehicle entertainment and navigation systems are becoming more mainstream and...
eetimes.com
Scaling Up Text Rendering on Scaled-Down Devices
The need to support a widening range of languages and...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +