• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
The Backward-Wave Oscillator
The Magnetron - Continued - 14183_104

Neets Module 11-Microwave Principles
Page Navigation
  86    87    88    89    90  91  92    93    94    95    96  
2-23 electron gun end of the tube toward the collector is not used in the bwo. Instead, the bwo extracts energy from the electron. beam by using a backward wave that travels from the collector toward the electron gun (cathode). Otherwise, the electron bunching action and energy extraction from the electron beam is very similar to the actions in a twt. The typical bwo is constructed from a folded transmission line or waveguide that winds back and forth across the path of the electron beam, as shown in figure 2-16. The folded waveguide in the illustration serves the same purpose as the helix in a twt. The fixed spacing of the folded waveguide limits the bandwidth of the bwo. Since the frequency of a given waveguide is constant, the frequency of the bwo is controlled by the transit time of the electron beam. The transit time is controlled by the collector potential. Thus, the output frequency can be changed by varying the collector voltage, which is a definite advantage. As in the twt, the electron beam in the bwo is focused by a magnet placed around the body of the tube. Figure 2-16.—Typical bwo. Q-26.   What is the primary use of the twt? Q-27.   The magnet surrounding the body of a twt serves what purpose? Q-28.   How are the input and output directional couplers in a twt connected to the helix? Q-29.   What relationship must exist between the electron beam and the traveling wave for bunching to occur in the electron beam of a twt? Q-30.   What structure in the twt delays the forward progress of the traveling wave? The Magnetron The MAGNETRON, shown in figure 2-17A, is a self-contained microwave oscillator that operates differently from the linear-beam tubes, such as the twt and the klystron. Figure 2-17B is a simplified drawing of the magnetron. CROSSED-ELECTRON and MAGNETIC fields are used in the magnetron to produce the high-power output required in radar and communications equipment.






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.