Quantcast Ferrite Devices - Continued - 14183_72

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-60 Since the wobble frequency is the same as the energy frequency, the energy in the waveguide always adds to the wobble of the electrons. The spin axis of the electron changes direction during the wobble motion and energy is used. The force causing the increase in wobble is the energy in the waveguide. Thus, the energy in the waveguide is attenuated by the ferrite and is given off as heat. Energy in the waveguide that is a different frequency from the wobble frequency of the ferrite is largely unaffected because it does not increase the amount of electron wobble. The resonant frequency of electron wobble can be varied over a limited range by changing the strength of the applied magnetic field. FERRITE ISOLATORS.—An isolator is a ferrite device that can be constructed so that it allows microwave energy to pass in one direction but blocks energy in the other direction in a waveguide. This isolator is constructed by placing a piece of ferrite off-center in a waveguide, as shown in figure 1-75. A magnetic field is applied by the magnet and adjusted to make the electron wobble frequency of the ferrite equal to the frequency of the energy traveling down the waveguide. Energy traveling down the waveguide from left to right will set up a rotating magnetic field that rotates through the ferrite material in the same direction as the natural wobble of the electrons. The aiding magnetic field increases the wobble of the ferrite electrons so much that almost all of the energy in the waveguide is absorbed and dissipated as heat. The magnetic fields caused by energy traveling from right to left rotate in the opposite direction through the ferrite and have very little effect on the amount of electron wobble. In this case the fields attempt to push the electrons in the direction opposite the natural wobble and no large movements occur. Since no overall energy exchange takes place, energy traveling from right to left is affected very little. Figure 1-75.—One-way isolator. FERRITE PHASE SHIFTER.—When microwave energy is passed through a piece of ferrite in a magnetic field, another effect occurs. If the frequency of the microwave energy is much greater than the electron wobble frequency, the plane of polarization of the wavefront is rotated. This is known as the FARADAY ROTATION EFFECT and is illustrated in figure 1-76. A ferrite rod is placed along the axis of the waveguide, and a magnetic field is set up along the axis by a coil. As a wavefront enters the section containing the ferrite, it sets up a limited motion in the electrons. The magnetic fields of the wavefront and the wobbling electrons interact, and the polarization of the wavefront is rotated. The amount of rotation depends upon the length of the ferrite rod. The direction of rotation depends upon the direction of the external magnetic field and can be reversed by reversing the field. The direction of rotation will remain constant, no matter what direction the energy in the waveguide travels, as long as the external field is not changed.


Electrical News
CFP IPSN 2016
The ACM/IEEE International Conference on Information Processing in Sensor Networks...
wsnblog.com
Silicon Valley's Longest-Serving CEO Beginning New Chapter
With the impending close of Microchip's $840 million acquisition of...
eetimes.com
EEVblog #774 – Low Battery Discharge Testing Part 1
Dave shows how to do discharge testing on AAA and...
eevblog.com
Perambulating & Texting -- Dazed & Confused
It seems that walking while texting is becoming endemic; so...
eetimes.com
IBM Takes A Second Turn at PCM Drift
Another approach taken by IBM and Macronix to address phase...
eetimes.com
The Next Big Thing Is The Continuum
What will come next for us? Internet of Everything, wearables,...
eetimes.com
Making EDA Exciting Again
There are still plenty of exciting challenges out there for...
eetimes.com
Turing Test -- Are You Talking to a Human or a Machine?
Imagine you are allowed to pose five questions to determine...
eetimes.com
MediaTek Cautions 'Weak Demand' for Handsets
MediaTek has pared its expectations for 2015 as a result...
eetimes.com
Patent Search Supports View 3D XPoint Based on Phase-Change
Is 3D XPoint non-volatile memory really just a version of...
eetimes.com
Industrial Automation Companies Combine
Japan's Omron is acquiring US-based Delta Tau Data Systems....
eetimes.com
Friday Quiz: Oscilloscopes
So, you use an oscilloscope every day? Well then, you...
eetimes.com
Hybrid Solar Cells Capture More
Solar cells today waste as much as 44 percent of...
eetimes.com
Google Street View Cars Test The Air
Environmental sensor firm Aclima has partnered with Google to test...
eetimes.com
Inventables X-Carve LIVE Build Part 3 + Batteriser Rant
Part 3 of Dave & David2 assembling the Inventables X-Carve...
eevblog.com
Inventables X-Carve Time Lapse Build
Time lapse footage of Dave & David 2 assembled the...
eevblog.com
Samsung's Slippage Stirs Smartphone Angst
Samsung's downbeat outlook is stirring up worries over the global...
eetimes.com
Imec, Panasonic Push Progress on ReRAM
The two companies jointly presented a paper at the recent...
eetimes.com
Patents: Exercises in Futility and Incomprehensibility?
Learning anything from patent documents has to be one of...
eetimes.com
The Best Way to Store Morse Code in C
In which we compare two approaches to store and manipulate...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +