Quantcast Ferrite Devices - Continued - 14183_72

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-60 Since the wobble frequency is the same as the energy frequency, the energy in the waveguide always adds to the wobble of the electrons. The spin axis of the electron changes direction during the wobble motion and energy is used. The force causing the increase in wobble is the energy in the waveguide. Thus, the energy in the waveguide is attenuated by the ferrite and is given off as heat. Energy in the waveguide that is a different frequency from the wobble frequency of the ferrite is largely unaffected because it does not increase the amount of electron wobble. The resonant frequency of electron wobble can be varied over a limited range by changing the strength of the applied magnetic field. FERRITE ISOLATORS.—An isolator is a ferrite device that can be constructed so that it allows microwave energy to pass in one direction but blocks energy in the other direction in a waveguide. This isolator is constructed by placing a piece of ferrite off-center in a waveguide, as shown in figure 1-75. A magnetic field is applied by the magnet and adjusted to make the electron wobble frequency of the ferrite equal to the frequency of the energy traveling down the waveguide. Energy traveling down the waveguide from left to right will set up a rotating magnetic field that rotates through the ferrite material in the same direction as the natural wobble of the electrons. The aiding magnetic field increases the wobble of the ferrite electrons so much that almost all of the energy in the waveguide is absorbed and dissipated as heat. The magnetic fields caused by energy traveling from right to left rotate in the opposite direction through the ferrite and have very little effect on the amount of electron wobble. In this case the fields attempt to push the electrons in the direction opposite the natural wobble and no large movements occur. Since no overall energy exchange takes place, energy traveling from right to left is affected very little. Figure 1-75.—One-way isolator. FERRITE PHASE SHIFTER.—When microwave energy is passed through a piece of ferrite in a magnetic field, another effect occurs. If the frequency of the microwave energy is much greater than the electron wobble frequency, the plane of polarization of the wavefront is rotated. This is known as the FARADAY ROTATION EFFECT and is illustrated in figure 1-76. A ferrite rod is placed along the axis of the waveguide, and a magnetic field is set up along the axis by a coil. As a wavefront enters the section containing the ferrite, it sets up a limited motion in the electrons. The magnetic fields of the wavefront and the wobbling electrons interact, and the polarization of the wavefront is rotated. The amount of rotation depends upon the length of the ferrite rod. The direction of rotation depends upon the direction of the external magnetic field and can be reversed by reversing the field. The direction of rotation will remain constant, no matter what direction the energy in the waveguide travels, as long as the external field is not changed.


Electrical News
Mergers and Acquisitions Create New Test Challenges
Awareness of the nature of test capacity and the need...
eetimes.com
IceStorm: Reverse-Engineering the Lattice iCE40 Bitstream
It will be interesting to see how IceStorm plays out,...
eetimes.com
Samsung Boosts Batteries with Graphene
Researchers from Samsung's Advanced Institute of Technology (SAIT), the company's...
eetimes.com
TSMC Overtakes Intel in Chip Capex Ranking
Intel, the world's largest chip company, is set slip to...
eetimes.com
Is the End of IPv4 at Hand? Not Anytime Soon...
The American Registry for Internet Numbers (ARIN) has sent out...
eetimes.com
Thin Film Solar Cells May Rival Silicon
A consortium of 11 European institutions in eight countries aim...
eetimes.com
Bringing Flexible Port Switching and Role Swapping to USB
Using a proprietary FlexConnect algorithm, Microchip's Smart hub can be...
eetimes.com
8 Views of the Chip Horizon
The Imec Technology Forum provided updates on the outlook for...
eetimes.com
EEVblog #762 – How Secure Are Electronic Safe Locks?
How secure are electronic locks used on safes? Dave tries...
eevblog.com
Could India's Analog Wafer Fab be Moving South?
Cricket Semiconductor, a company set up with the purpose of...
eetimes.com
Apple Watch Tear Down Reveals European Chips
The Apple Watch, is the trailblazer of a wearables equipment...
eetimes.com
Ethernet Standards Ramp Up For Faster IT
The Ethernet Alliance and UNH-IOL hosted a plugfest to test...
eetimes.com
3-D Fingerprint Scanner Beats Apple's
The University of California at Davis, in cooperation with the...
eetimes.com
No Respect!
Every now and then, you see someone doing something, and...
eetimes.com
Friday Quiz: Name That 1994 Test Instrument
If you can remember back to 1994, then take a...
eetimes.com
Ambiq Director Takes on Interim CEO Role
Mike Noonen, a board director at Ambiq Micro Inc. (Austin,...
eetimes.com
Bosch Finds Graphene Magnetic Sensor 100x More Sensitive than Silicon
Researchers at the Stuttgart-based engineering company Bosch have worked with...
eetimes.com
It's a Bird. It's a Plane! It's a Drone!!
EE Times has gathered a panel of drone experts, including...
eetimes.com
Firework display as seen through the eyes of a drone
Have been thinking about purchasing a drone? If so, watching...
eetimes.com
FinFETs + FD-SOI Proposition: May Save Power
Ron Martino, vice president of application processors and advanced technology...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +