Quantcast Ferrite Devices - Continued - 14183_72

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-60 Since the wobble frequency is the same as the energy frequency, the energy in the waveguide always adds to the wobble of the electrons. The spin axis of the electron changes direction during the wobble motion and energy is used. The force causing the increase in wobble is the energy in the waveguide. Thus, the energy in the waveguide is attenuated by the ferrite and is given off as heat. Energy in the waveguide that is a different frequency from the wobble frequency of the ferrite is largely unaffected because it does not increase the amount of electron wobble. The resonant frequency of electron wobble can be varied over a limited range by changing the strength of the applied magnetic field. FERRITE ISOLATORS.—An isolator is a ferrite device that can be constructed so that it allows microwave energy to pass in one direction but blocks energy in the other direction in a waveguide. This isolator is constructed by placing a piece of ferrite off-center in a waveguide, as shown in figure 1-75. A magnetic field is applied by the magnet and adjusted to make the electron wobble frequency of the ferrite equal to the frequency of the energy traveling down the waveguide. Energy traveling down the waveguide from left to right will set up a rotating magnetic field that rotates through the ferrite material in the same direction as the natural wobble of the electrons. The aiding magnetic field increases the wobble of the ferrite electrons so much that almost all of the energy in the waveguide is absorbed and dissipated as heat. The magnetic fields caused by energy traveling from right to left rotate in the opposite direction through the ferrite and have very little effect on the amount of electron wobble. In this case the fields attempt to push the electrons in the direction opposite the natural wobble and no large movements occur. Since no overall energy exchange takes place, energy traveling from right to left is affected very little. Figure 1-75.—One-way isolator. FERRITE PHASE SHIFTER.—When microwave energy is passed through a piece of ferrite in a magnetic field, another effect occurs. If the frequency of the microwave energy is much greater than the electron wobble frequency, the plane of polarization of the wavefront is rotated. This is known as the FARADAY ROTATION EFFECT and is illustrated in figure 1-76. A ferrite rod is placed along the axis of the waveguide, and a magnetic field is set up along the axis by a coil. As a wavefront enters the section containing the ferrite, it sets up a limited motion in the electrons. The magnetic fields of the wavefront and the wobbling electrons interact, and the polarization of the wavefront is rotated. The amount of rotation depends upon the length of the ferrite rod. The direction of rotation depends upon the direction of the external magnetic field and can be reversed by reversing the field. The direction of rotation will remain constant, no matter what direction the energy in the waveguide travels, as long as the external field is not changed.


Electrical News
Creating an 8x8x8 3D LED Cube: The Base PCB
Creating an 8x8x8 3D tri-color LED cube from the ground...
eetimes.com
Allocating MCU Resources Accurately
When you need a new MCU and new I/O for...
eetimes.com
Experts Call for Secure Sensors
Sensor nodes are the most vulnerable point of attack in...
eetimes.com
AMD Integrates X86, GPU & I/O
Early next year, AMD will ship Carrizo, its most integrated...
eetimes.com
Test Your Way to a Better IoT
Better design and test procedures will lead to much lower...
eetimes.com
12 Startups I Saw at Demo
The consumer Internet of Things sector is getting crowded and...
eetimes.com
Megachips: Japan's Best Kept Secret
In a recent interview with EE Times, Megachips' president and...
eetimes.com
Intel Expects 2015 Mobile Speedup
Intel is back on track with mobile, company officials said...
eetimes.com
Culture Is King in Job Search
Programmers, web developers, and software engineers often assume that technical...
eetimes.com
LEDs Go Color-Temperature & Tunable
The LED manufacturer Everlight introduced what it calls the world's...
eetimes.com
Drag An Oscilloscope Through 6km of Mud?
Sponsor Dave in the 2014 Sydney Mud Run, proceeds go...
eevblog.com
Friday Quiz: More Radar
An EE Times reader submitted our second Friday quiz about...
eetimes.com
Dick Smith – Amateur Radio & Adventure
Dick Smith talks about how he got started, the early...
eevblog.com
Want to Present a Paper at ESC Boston 2015?
If you are interested in presenting a paper on the...
eetimes.com
Transparent Car Shows Automotive's Future
TE Connectivity's clear-plastic, full-size model car shows the latest advances...
eetimes.com
Why No One Leaves Linear Technology
Why culture makes Linear Tech a winner....
eetimes.com
The Messe U-Bahn Crush Business Indicator
Electronica's healthy glow means good things for Europe's electronics sector....
eetimes.com
Automotive Industry Drives Chip Demand
Among all major end use-applications for integrated circuits, the automotive...
eetimes.com
Power Week: Duracell Buyout Tied to Wireless Power, EVs?
The acquisition of the Duracell battery brand by Warren Buffett's...
eetimes.com
What Are You Wearing?
The wearables market is at $6B this year and is...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +