Quantcast Ferrite Devices - Continued - 14183_72

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-60 Since the wobble frequency is the same as the energy frequency, the energy in the waveguide always adds to the wobble of the electrons. The spin axis of the electron changes direction during the wobble motion and energy is used. The force causing the increase in wobble is the energy in the waveguide. Thus, the energy in the waveguide is attenuated by the ferrite and is given off as heat. Energy in the waveguide that is a different frequency from the wobble frequency of the ferrite is largely unaffected because it does not increase the amount of electron wobble. The resonant frequency of electron wobble can be varied over a limited range by changing the strength of the applied magnetic field. FERRITE ISOLATORS.—An isolator is a ferrite device that can be constructed so that it allows microwave energy to pass in one direction but blocks energy in the other direction in a waveguide. This isolator is constructed by placing a piece of ferrite off-center in a waveguide, as shown in figure 1-75. A magnetic field is applied by the magnet and adjusted to make the electron wobble frequency of the ferrite equal to the frequency of the energy traveling down the waveguide. Energy traveling down the waveguide from left to right will set up a rotating magnetic field that rotates through the ferrite material in the same direction as the natural wobble of the electrons. The aiding magnetic field increases the wobble of the ferrite electrons so much that almost all of the energy in the waveguide is absorbed and dissipated as heat. The magnetic fields caused by energy traveling from right to left rotate in the opposite direction through the ferrite and have very little effect on the amount of electron wobble. In this case the fields attempt to push the electrons in the direction opposite the natural wobble and no large movements occur. Since no overall energy exchange takes place, energy traveling from right to left is affected very little. Figure 1-75.—One-way isolator. FERRITE PHASE SHIFTER.—When microwave energy is passed through a piece of ferrite in a magnetic field, another effect occurs. If the frequency of the microwave energy is much greater than the electron wobble frequency, the plane of polarization of the wavefront is rotated. This is known as the FARADAY ROTATION EFFECT and is illustrated in figure 1-76. A ferrite rod is placed along the axis of the waveguide, and a magnetic field is set up along the axis by a coil. As a wavefront enters the section containing the ferrite, it sets up a limited motion in the electrons. The magnetic fields of the wavefront and the wobbling electrons interact, and the polarization of the wavefront is rotated. The amount of rotation depends upon the length of the ferrite rod. The direction of rotation depends upon the direction of the external magnetic field and can be reversed by reversing the field. The direction of rotation will remain constant, no matter what direction the energy in the waveguide travels, as long as the external field is not changed.


Electrical News
After Patient Deaths, Thoratec Reinstates Former CEO
Thoratec Corp. has replaced CEO Gary Burbach with the man...
eetimes.com
Saddleback Sale - It's Happy Dance Time
The folks at Saddleback Leather are having a sale, and...
eetimes.com
7 Tricks for Estimating Battery Life Accurately
Here are seven tricks that -- if followed -- can...
eetimes.com
Spansion to Launch 3D-Embedded Automotive MCU
Spansion will launch a new microcontroller designed to offer high-performance...
eetimes.com
Intel Leads Non-iPad Tablet Processor Market
Intel, striving to get processor design wins in mobile devices,...
eetimes.com
FDA's Device Approvals Come Under Fire, Again
A recent study concludes that most medical devices cleared via...
eetimes.com
Wearables & IoT Boom Creates Supply Chain Challenges
Great ideas for new wearables or connected electronic devices can...
eetimes.com
ARM Extends Into IoT Software
ARM has announced plans for IoT device and cloud software...
eetimes.com
Oven Performance Shows Flip Side of Thermal Management
The standard, ubiquitous cooking oven is not only inefficient but...
eetimes.com
Tabula's DesignInsight Offers 100% Observability Into 3PLDs
It's not going too far to say that Tabula's DesignInsight...
eetimes.com
MediaTek May Narrow Qualcomm's Lead in China's 4G Market
MediaTek has a chance to narrow Qualcomm's lead in China's...
eetimes.com
EEVblog #669 – FLIR TG165 Thermal Imager Teardown
What’s inside the new FLIR TG165 Visual IR Thermometer /...
eevblog.com
Connected Car Takes Center Stage at CTIA
Reporting from Super Mobility Week, Steve Bell gives us insights...
eetimes.com
Microsoft Announces Windows 10
Microsoft execs emphasize the desktop UI, say Windows 10's final...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Air Conditioner Falls From Window, Still Works
Sometimes, it's the mundane things in electrical and electronic devices...
eetimes.com
Robots Confront Safety Standards
An emerging crop of industrial robots will be more user-friendly...
eetimes.com
Electronic Brain by 2023
Progress continues on fake brain to be used as test...
eetimes.com
Google, Silicon Labs Mesh for ZigBee-Like Protocol
Google's Nest-led Thread Group is meeting at its campus in...
eetimes.com
Bionic Ear Due Soon
STMicroelectronics collaborates with two companies on a bionic ear that...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +