Quantcast
Ferrite Devices - Continued - 14183_72

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-60 Since the wobble frequency is the same as the energy frequency, the energy in the waveguide always adds to the wobble of the electrons. The spin axis of the electron changes direction during the wobble motion and energy is used. The force causing the increase in wobble is the energy in the waveguide. Thus, the energy in the waveguide is attenuated by the ferrite and is given off as heat. Energy in the waveguide that is a different frequency from the wobble frequency of the ferrite is largely unaffected because it does not increase the amount of electron wobble. The resonant frequency of electron wobble can be varied over a limited range by changing the strength of the applied magnetic field. FERRITE ISOLATORS.—An isolator is a ferrite device that can be constructed so that it allows microwave energy to pass in one direction but blocks energy in the other direction in a waveguide. This isolator is constructed by placing a piece of ferrite off-center in a waveguide, as shown in figure 1-75. A magnetic field is applied by the magnet and adjusted to make the electron wobble frequency of the ferrite equal to the frequency of the energy traveling down the waveguide. Energy traveling down the waveguide from left to right will set up a rotating magnetic field that rotates through the ferrite material in the same direction as the natural wobble of the electrons. The aiding magnetic field increases the wobble of the ferrite electrons so much that almost all of the energy in the waveguide is absorbed and dissipated as heat. The magnetic fields caused by energy traveling from right to left rotate in the opposite direction through the ferrite and have very little effect on the amount of electron wobble. In this case the fields attempt to push the electrons in the direction opposite the natural wobble and no large movements occur. Since no overall energy exchange takes place, energy traveling from right to left is affected very little. Figure 1-75.—One-way isolator. FERRITE PHASE SHIFTER.—When microwave energy is passed through a piece of ferrite in a magnetic field, another effect occurs. If the frequency of the microwave energy is much greater than the electron wobble frequency, the plane of polarization of the wavefront is rotated. This is known as the FARADAY ROTATION EFFECT and is illustrated in figure 1-76. A ferrite rod is placed along the axis of the waveguide, and a magnetic field is set up along the axis by a coil. As a wavefront enters the section containing the ferrite, it sets up a limited motion in the electrons. The magnetic fields of the wavefront and the wobbling electrons interact, and the polarization of the wavefront is rotated. The amount of rotation depends upon the length of the ferrite rod. The direction of rotation depends upon the direction of the external magnetic field and can be reversed by reversing the field. The direction of rotation will remain constant, no matter what direction the energy in the waveguide travels, as long as the external field is not changed.


Electrical News
Hubble Turns 24: 5 Biggest Discoveries
The Hubble Space Telescope has helped solve huge questions about...
eetimes.com
Samsung Defense: Marketing Guru vs. Marketing Guru
Parade of marketing and programming experts continues as Samsung tries...
eetimes.com
IoT: A Return to Our Favorite EDA Requirements
For the electronic design automation (EDA) industry, the Internet of...
eetimes.com
Life Without DropBox? Unthinkable!
Once you've installed the DropBox app on your computers, anytime...
eetimes.com
New IC for Driverless LEDs
A Eurolighting module produces flicker-free LED light from 230 VAC....
eetimes.com
SanDisk Finds Profit Behind the Tech Curve
Focus and frugality put SanDisk in several sweet spots in...
eetimes.com
Will 'Makers' Help Chip Guys' Bottom Line?
Are you seeing this newborn love among "makers," board vendors,...
eetimes.com
Where Are DRAM Interfaces Headed?
What comes after today's fastest interfaces? Jim Handy talks about...
eetimes.com
IoT Requires Continuous Development
The Internet of Things will add so much programmability to...
eetimes.com
AMD Narrows Its Losses in Q1
As sales of PC continue to decline, AMD is looking...
eetimes.com
Quantum-Dot Windows Harvest Solar Energy
The windows of the future could harvest the sunlight passing...
eetimes.com
Patent Lessons From Apple v. Samsung
The Apple v. Samsung case exposes vast gray areas in...
eetimes.com
Fitness Wearables Lack Accuracy
A new generation of wearable fitness sensors is needed to...
eetimes.com
Bagels: Official Food of Test & Measurement
A bagel is the perfect food to eat at your...
eetimes.com
Max's BADASS Display, Part 3
Now we come to consider the various ways in which...
eetimes.com
Smartphones, 28nm Tech Drive TSMC 1Q Revenue
Thanks to demand for high-end smartphones and investment in technology...
eetimes.com
Quantenna Speeds Up WiFi
As several major companies roll out 802.11ac solutions with multi-user,...
eetimes.com
Samsung Patent Leaks Point to Google Glass Competitor
In a series of leaked patent documents from South Korea,...
eetimes.com
IMEC Adds Image Sensors to Commercial Development Service
The Belgian company has published a brochure that boasts of...
eetimes.com
Why iBeacon Is Important for You
It's true that iBeacon may help you find a restaurant...
eetimes.com
   


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +