Quantcast Crystals as Tuned Circuits

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-25 crystal may crack. Overloading the crystal affects the frequency of vibration because the power dissipation and crystal temperature increase with the amount of load current. Crystals as Tuned Circuits A quartz crystal and its equivalent circuit are shown in figure 2-20, views (A) and (B). Capacitor C2, inductor L1, and resistor R1 in view (B) represent the electrical equivalent of the quartz crystal in view (A). Capacitance C1 in (view B) represents the capacitance between the crystal electrodes in view (A). Depending upon the circuit characteristics, the crystal can act as a capacitor, an inductor, a series-tuned circuit, or a parallel-tuned circuit. Figure 2-20A.—Quartz crystal and equivalent circuit. Figure 2-20B.—Quartz crystal and equivalent circuit. At some frequency, the reactances of equivalent capacitor C1 and inductor L will be equal and the crystal will act as a series-tuned circuit. A series-tuned circuit has a minimum impedance at resonance (figure 2-21). Above resonance the series-tuned circuit acts INDUCTIVELY, and below resonance it acts CAPACITIVELY. In other words, the crystal unit has its lowest impedance at the series-resonance frequency. The impedance increases as the frequency is lowered because the unit acts as a capacitor. The impedance of the crystal unit also increases as the frequency is raised above the series-resonant point because the unit acts as an inductor. Therefore, the crystal unit reacts as a series-tuned circuit.


Electrical News
Patents: Exercises in Futility and Incomprehensibility?
Learning anything from patent documents has to be one of...
eetimes.com
The Best Way to Store Morse Code in C
In which we compare two approaches to store and manipulate...
eetimes.com
Test is not someone else's problem
You can reduce production time and cost if you create...
eetimes.com
NXP Touts Mixed Signal, Auto Gains
NXP Semiconductors' financial results for the second quarter of 2015...
eetimes.com
Graphene Lights Up Chips
A group of national and international researchers have demonstrated an...
eetimes.com
Independent Board Members: The Outsiders With an "In"
Being a member of the board of a hot young...
eetimes.com
Mythbusters Tests Killer Drones
See what the team on Discovery Communications' TV series Mythbusters...
eetimes.com
CERN Taps Brocade For SDN
The legendary particle physics lab will use Brocade's OpenDaylight-based SDN...
eetimes.com
Agile Design for Hardware, Part II
In the second of a three-part series, two Berkeley professors...
eetimes.com
Smarter Sensor Hub Cuts Power
QuickLogic has a new sensor hub Eos, named after the...
eetimes.com
Windows 10 Mobile: Why Microsoft Is Confident
Windows 10 for smartphones is essentially feature complete, says Microsoft,...
eetimes.com
Samsung SE370 Monitor Boasts Wireless Charging Capability
No stranger to innovative products, Samsung launches the SE370 monitor,...
eetimes.com
EEVblog #773 – 80W INDUAL LED Light Teardown
Teardown of the new INDUAL 80W industrial LED high bay...
eevblog.com
eBook Explains Faster In-System Flash Programming
"Faster Flash Programming via FPGA and IJTAG" from ASSET Intertech...
eetimes.com
Quantum Computing: Diode-like Breakthrough Surmounts Roadblock
Quantum computers need a component like a diode, that only...
eetimes.com
There's No Shame in ReRAM
Intel and Micron say they've developed a new class of...
eetimes.com
Chinese Automotive Chip Market Continues Rapid Growth
Even as growth shipments in vehicle shipments in China slows,...
eetimes.com
UMC Cuts Expectations for 28nm Ramp on Weaker Demand
United Microelectronics Corp. (UMC), the world's second-largest foundry, said its...
eetimes.com
Metallic Nanoparticles May Lower Solar Cost
While the domestic solar energy industry grew 34% last year,...
eetimes.com
Multi-layer security needed for Industrial IoT
Industrial networks are increasingly vulnerable to cyber attacks. Their security...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +