Quantcast Figure 4-37.Shunt voltage regulator

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-42 The schematic shown in figure 4-37 is that of a shunt voltage regulator. Notice that Q1 is in parallel with the load. Components of this circuit are identical with those of the series voltage regulator except for the addition of fixed resistor RS. As you study the schematic, you will see that this resistor is connected in series with the output load resistance. The current limiting resistor (R1) and Zener diode (CR1) provide a constant reference voltage for the base-collector junction of Q1. Notice that the bias of Q1 is determined by the voltage drop across RS and R1. As you should know, the amount of forward bias across a transistor affects its total resistance. In this case, the voltage drop across RS is the key to the total circuit operation. Figure 4-37.—Shunt voltage regulator. Figure 4-38 is the schematic for a typical shunt-type regulator. Notice that the schematic is identical to the schematic shown in figure 4-37 except that voltages are shown to help you understand the functions of the various components. In the circuit shown, the voltage drop across the Zener diode (CR1) remains constant at 5.6 volts. This means that with a 20-volt input voltage, the voltage drop across R1 is 14.4 volts. With a base-emitter voltage of 0.7 volt, the output voltage is equal to the sum of the voltages across CR1 and the voltage at the base-emitter junction of Q1. In this example, with an output voltage of 6.3 volts and a 20-volt input voltage, the voltage drop across RS equals 13.7 volts. Study the schematic to understand fully how these voltages are developed. Pay close attention to the voltages shown. Figure 4-38.—Shunt voltage regulator (with voltages).


Electrical News
eBook Explains Faster In-System Flash Programming
"Faster Flash Programming via FPGA and IJTAG" from ASSET Intertech...
eetimes.com
Quantum Computing: Diode-like Breakthrough Surmounts Roadblock
Quantum computers need a component like a diode, that only...
eetimes.com
There's No Shame in ReRAM
Intel and Micron say they've developed a new class of...
eetimes.com
Chinese Automotive Chip Market Continues Rapid Growth
Even as growth shipments in vehicle shipments in China slows,...
eetimes.com
UMC Cuts Expectations for 28nm Ramp on Weaker Demand
United Microelectronics Corp. (UMC), the world's second-largest foundry, said its...
eetimes.com
Metallic Nanoparticles May Lower Solar Cost
While the domestic solar energy industry grew 34% last year,...
eetimes.com
Multi-layer security needed for Industrial IoT
Industrial networks are increasingly vulnerable to cyber attacks. Their security...
eetimes.com
What's Next for Wearables?
Wearables have the power to transform the world around us...
eetimes.com
Demand for Radar Systems Boosts Infineon's Chip Production
Radar systems are experience rapidly growing acceptance among car buyers....
eetimes.com
Intel, Micron Launch "Bulk-Switching" ReRAM
Intel Corp. and Micron Technology Inc. have launched a new...
eetimes.com
Chips in Space -- MacSpace, A Record Throughput Multi-Core Processor for Satellites
MacSpace is a collaborative R&D project aiming to research and...
eetimes.com
Smart Meters Can Destabilize Grid, Study Says
In some geographies including Germany, smart meters are mandatory for...
eetimes.com
Ams Buys NXP Sensor Business
The acquisition adds advanced monolithic and integrated CMOS sensors to...
eetimes.com
Your Favorite SciFi in Audio Form for Free
Web sites such as Open Culture and the Internet Archive...
eetimes.com
7 Tips for Overcoming PCB Electromagnetic Issues
Faced with the challenges of new materials and new components,...
eetimes.com
IoT Accelerators Offer Advice to Entrepreneurs
Startup accelerator experts panel offers IoT entrepreneurs insights into Kickstarter,...
eetimes.com
Graphene Sensor Detects Nano Molecules
Researchers use graphene to improve upon infrared absorption spectroscopy for...
eetimes.com
Apple HomeKit Requires ID Chip
Apple requires an ID chip in devices using its HomeKit...
eetimes.com
5 Biggest IoT Security Blunders
A Bluetooth expert debunks myths and untangles messy methodologies that...
eetimes.com
EEVblog #772 – How To Calculate Wasted Battery Capacity
In this tutorial Dave explains how to precisely measure and...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +