Quantcast Figure 4-37.Shunt voltage regulator

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-42 The schematic shown in figure 4-37 is that of a shunt voltage regulator. Notice that Q1 is in parallel with the load. Components of this circuit are identical with those of the series voltage regulator except for the addition of fixed resistor RS. As you study the schematic, you will see that this resistor is connected in series with the output load resistance. The current limiting resistor (R1) and Zener diode (CR1) provide a constant reference voltage for the base-collector junction of Q1. Notice that the bias of Q1 is determined by the voltage drop across RS and R1. As you should know, the amount of forward bias across a transistor affects its total resistance. In this case, the voltage drop across RS is the key to the total circuit operation. Figure 4-37.—Shunt voltage regulator. Figure 4-38 is the schematic for a typical shunt-type regulator. Notice that the schematic is identical to the schematic shown in figure 4-37 except that voltages are shown to help you understand the functions of the various components. In the circuit shown, the voltage drop across the Zener diode (CR1) remains constant at 5.6 volts. This means that with a 20-volt input voltage, the voltage drop across R1 is 14.4 volts. With a base-emitter voltage of 0.7 volt, the output voltage is equal to the sum of the voltages across CR1 and the voltage at the base-emitter junction of Q1. In this example, with an output voltage of 6.3 volts and a 20-volt input voltage, the voltage drop across RS equals 13.7 volts. Study the schematic to understand fully how these voltages are developed. Pay close attention to the voltages shown. Figure 4-38.—Shunt voltage regulator (with voltages).


Electrical News
Last Man on Earth: How Would You Behave?
How do you think you'd behave if you were the...
eetimes.com
Channel Consolidation & Conflict: Back to the Future!
As much as everything changes, everything still stays the same....
eetimes.com
Is Formal Verification Artificial Intelligence?
Artificial intelligence or not, formal verification is a technology that...
eetimes.com
Is Formal Verification Artificial Intelligence?
Artificial intelligence or not, formal verification is a technology that...
eetimes.com
Wearable Cameras Next Boom Market for Image Sensors
Annual shipments of wearable cameras will surpass 30 million units...
eetimes.com
Resistive RAM Memory is Finally Here
Resistive RAM's low power consumption and small cell area make...
eetimes.com
NVM Express SSDs Hit Servers, Workstations
HGST begins shipping its Ultrastar SN100 series for servers announced...
eetimes.com
Moore's Law Demise: Maybe It's a Good Thing
Moore's Law will celebrate its 50th anniversary on April 19,...
eetimes.com
The GaN Era Approaches
Gallium nitride possesses many characteristics that will allow production of...
eetimes.com
Making Wireless LoRa Design Easier, Faster
Microchip has a pre-certified coin-cell sized module to accelerate deployment...
eetimes.com
Engine Yard Pivots Toward Container Management
New Engine Yard CEO Beau Vrolyk is moving the company...
eetimes.com
Transceiver Supports Dual 2.4 GHz IoT Networks
Industrial applications, home automation, and the like often need multiple...
eetimes.com
Moore's Law @50 in the News
Here's a sampler of some of the best of the...
eetimes.com
When Blueprints Were Really Blue: Is Engineering Becoming Less Satisfying?
Back then, working as a professional EE was like being...
eetimes.com
MINI Giving Drivers a Peek at 'Augmented Reality'
Although most drivers have yet to embrace the idea of...
eetimes.com
eevBLAB #9 – Meet Dave
Meet Dave2, the first EEVblog employee....
eevblog.com
Qualcomm to Leverage Monolithic 3D for Smartphones
Qualcomm is looking to leverage Monolithic 3D IC technology to...
eetimes.com
Full Human Head Transplant May Be Closer Than You Think
Suddenly, some of the things we read in science fiction...
eetimes.com
Automotive Chip Reliability: A Matter of Design Methods
Up to 90% of all innovations today are generated through...
eetimes.com
Paper Memory Ready to Roll
Researchers at the Finish VTT Technical Research Centre have demonstrated...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +