Quantcast Figure 4-37.Shunt voltage regulator

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-42 The schematic shown in figure 4-37 is that of a shunt voltage regulator. Notice that Q1 is in parallel with the load. Components of this circuit are identical with those of the series voltage regulator except for the addition of fixed resistor RS. As you study the schematic, you will see that this resistor is connected in series with the output load resistance. The current limiting resistor (R1) and Zener diode (CR1) provide a constant reference voltage for the base-collector junction of Q1. Notice that the bias of Q1 is determined by the voltage drop across RS and R1. As you should know, the amount of forward bias across a transistor affects its total resistance. In this case, the voltage drop across RS is the key to the total circuit operation. Figure 4-37.—Shunt voltage regulator. Figure 4-38 is the schematic for a typical shunt-type regulator. Notice that the schematic is identical to the schematic shown in figure 4-37 except that voltages are shown to help you understand the functions of the various components. In the circuit shown, the voltage drop across the Zener diode (CR1) remains constant at 5.6 volts. This means that with a 20-volt input voltage, the voltage drop across R1 is 14.4 volts. With a base-emitter voltage of 0.7 volt, the output voltage is equal to the sum of the voltages across CR1 and the voltage at the base-emitter junction of Q1. In this example, with an output voltage of 6.3 volts and a 20-volt input voltage, the voltage drop across RS equals 13.7 volts. Study the schematic to understand fully how these voltages are developed. Pay close attention to the voltages shown. Figure 4-38.—Shunt voltage regulator (with voltages).


Electrical News
Invisibility Cloaks Now Shield People from Sight
Invisibility cloaks are now working in the visible spectrum, someday...
eetimes.com
EEVblog #710 – Intercom System Repair
Join Dave step-by-step as he attempts to find the problem...
eevblog.com
Tabula Set for March Shutdown
Programmable logic company Tabula is rumored to be closing its...
eetimes.com
Sony Joins FDSOI Club
Sony Corp. revealed that the company's next-generation Global Navigation Satellite...
eetimes.com
Hardware Emulation: One Verification Tool, Unending Possibilities
Verification Consultant Lauro Rizzatti explains why hardware emulation really is...
eetimes.com
Belichick's 'DeflateGate' Explanation Falls Flat on Technical Details
Was football's Belichick making sense when describing relationship between temperature...
eetimes.com
DesignCon Shows Off Best in Test
DesignCon award ceremony showcases best chip, board, system-level products excelling...
eetimes.com
Feast Your Orbs on My Vetinari Clock Prototype
Things are really starting to come together with regard to...
eetimes.com
FPGA Debug Goes Outside with New Hardware
For 10 years, Belgium company Byte Paradigm has operated as...
eetimes.com
Qualcomm Outlook Exposes 5 Trouble Spots
Although Qualcomm showed strong Q1 results, the company -- facing...
eetimes.com
Rambus Readies Lensless Image Sensor Platform
Intellectual property licensor Rambus is going to provide a "platform"...
eetimes.com
Friday Quiz: Voltage References
Voltage references are basic building blocks for ADCs and DACs,...
eetimes.com
Supercapbatteries, Thermoelectrics to Power Future Cars
The cars of the future will be powered by supercabatteries...
eetimes.com
Broadcom Flips on Future Set Tops
Broadcom is nestled between traditional cable companies and newer over...
eetimes.com
GaN Pumps Power Revolution
Gallium nitride is ramping up a revolution in power conversion,...
eetimes.com
Introducing USB Type-C -- USB for 21st Century Systems
Industry leaders are poised to start rolling out devices enabled...
eetimes.com
Chinese Walls and Back Doors
Qualcomm and U.S. industry are the losers as China's antitrust...
eetimes.com
Intel 5th Gen vPro Goes 60GHz Wireless
Intel has incorporated Pro Wireless Display (WiDi) and Wireless Docking...
eetimes.com
Backplanes Hit a Wall at 56G
Backplane-based systems are hitting a wall at 56 Gbit/second speeds,...
eetimes.com
Can Kevlar prevent lithium-ion battery fire risks?
University of Michigan researchers have used nanofibers extracted from Kevlar...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +