Quantcast THE BASIC POWER SUPPLY

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-2 THE BASIC POWER SUPPLY Figure 3-1 shows the block diagram of the basic power supply. Most power supplies are made up of four basic sections: a TRANSFORMER, a RECTIFIER, a FILTER, and a REGULATOR. Figure 3-1.—Block diagram of a basic power supply. As you can see, the first section is the TRANSFORMER. The transformer serves two primary purposes: (1) to step up or step down the input line voltage to the desired level and (2) to couple this voltage to the rectifier section. The RECTIFIER section converts the ac signal to a pulsating dc voltage. However, you will see later in this chapter that the pulsating dc voltage is not desirable. For this reason, a FILTER section is used to convert the pulsating dc voltage to filtered dc voltage. The final section, the REGULATOR, does just what the name implies. It maintains the output of the power supply at a constant level in spite of large changes in load current or in input line voltage. Depending upon the design of the equipment, the output of the regulator will maintain a constant dc voltage within certain limits. Now that you know what each section does, let's trace a signal through the power supply and see what changes are made to the input signal. In figure 3-2, the input signal of 120 volts ac is applied to the primary of the transformer, which has a turns ratio of 1:3. We can calculate the output by multiplying the input voltage by the ratio of turns in the secondary winding to turns in the primary winding. Therefore, the output voltage of our example is: 120 volts ac × 3, or 360 volts ac. Depending on the type of rectifier used (full-wave or half-wave), the output from the rectifier will be a portion of the input. Figure 3-2 shows the ripple waveform associated with a full-wave rectifier. The filter section contains a network of resistors, capacitors, or inductors that controls the rise and fall time of the varying signal so that the signal remains at a more constant dc level. You will see this more clearly in the discussion of the actual filter circuits. You can see that the output of the filter is at a 180-volt dc level with an ac RIPPLE voltage riding on it. (Ripple voltage is a small ac voltage riding at some dc voltage level. Normally, ripple voltage is an unwanted ac voltage created by the filter section of a power supply.) This signal now goes to the regulator where it will be maintained at approximately 180 volts dc to the load. Figure 3-2.—Block diagram of a power supply. Q1.   What are the four basic sections to a power supply? Q2.   What is the purpose of the regulator?


Electrical News
EEVblog #748 – How Do Transistors Work?
Dave explains how BJT and MOSFET transistors work at the...
eevblog.com
Friday Quiz: Data Communications
Test your knowledge of the OSI 7-layer protocol stack....
eetimes.com
Thank You, Albert Einstein for GPS
Crazy ideas like time slowing down with velocity or mass...
eetimes.com
Huawei vs. Xiaomi: China in Microcosm
Huawei's technological prowess in telecom and Xiaomi's agility in China's...
eetimes.com
Google Rolls Android M, IoT OS
Developers were audibly excited by the bevy of improvements and...
eetimes.com
Scale & Scalability -- The Keys to True FPGA-Based Verification
Scalable FPGA-based verification has become a serious alternative to big-box...
eetimes.com
A New Broadcom: The First Cuts
The proposed $37 billion merger of Avago and Broadcom creates...
eetimes.com
Micron Bullish On Coming Year
Company president Mark Adams sees poor PC DRAM performance stabilizing...
eetimes.com
When Did Analog Steal Digital's Mojo?
Name two semiconductor companies whose names begin with the letter...
eetimes.com
Avago-Broadcom Deal: What's in It for You?
Where is the affinity - or any apparent good vibe...
eetimes.com
FPGAs Ride HP's Moonshot
SRC Computers announced a new FPGA server card that Hewlett-Packard...
eetimes.com
NXP Agrees to RF Power Business Sell-Off
NXP Semiconductors strikes deal to sell its RF power business...
eetimes.com
Internet of Things Creates Opportunity Bubble for Analog
The analog devices play a special role in the Internet...
eetimes.com
Chips Make Change in Emerging Markets
The chief executive of ARM challenges engineers to put today's...
eetimes.com
Daimler, Qualcomm Announce Strategic Partnership
Mercedes-Benz brand owner Daimler AG and Qualcomm Technologies have announced...
eetimes.com
Avago, Broadcom Combo Praised
Reports Avago will bid to buy Broadcom amid an industry...
eetimes.com
Rohm Buys Renesas Wafer Fab
Rohm Co. Ltd. (Kyoto, Japan) has moved to acquire a...
eetimes.com
Xray Sensor Startup Raises Funds
MultiX SA has developed a sensor the ME100 based on...
eetimes.com
Introducing the Cubic Board -- A Completely Open Source FPGA Project
One of the main design considerations for the FPGA-based Cubic...
eetimes.com
Can You Trust a DR-Check Without a DR-Spec?
Designers may find the flow from the design rule specification...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +