Quantcast PARALLEL OPERATION OF ALTERNATORS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
3-16 depends mainly on three things: (1) the number of conductors in series per winding, (2) the speed (alternator rpm) at which the magnetic field cuts the winding, and (3) the strength of the magnetic field. Any of these three factors could be used to control the amount of voltage induced in the alternator windings. The number of windings, of course, is fixed when the alternator is manufactured. Also, if the output frequency is required to be of a constant value, then the speed of the rotating field must be held constant. This prevents the use of the alternator rpm as a means of controlling the voltage output. Thus, the only practical method for obtaining voltage control is to control the strength of the rotating magnetic field. The strength of this electromagnetic field may be varied by changing the amount of current flowing through the field coil. This is accomplished by varying the amount of voltage applied across the field cod. Q20.   How is output voltage controlled in practical alternators? PARALLEL OPERATION OF ALTERNATORS Alternators are connected in parallel to (1) increase the output capacity of a system beyond that of a single unit, (2) serve as additional reserve power for expected demands, or (3) permit shutting down one machine and cutting in a standby machine without interrupting power distribution. When alternators are of sufficient size, and are operating at different frequencies and terminal voltages, severe damage may result if they are suddenly connected to each other through a common bus. To avoid this, the machines must be synchronized as closely as possible before connecting them together. This may be accomplished by connecting one generator to the bus (referred to as bus generator), and then synchronizing the other (incoming generator) to it before closing the incoming generator’s main power contactor. The generators are synchronized when the following conditions are set: 1. Equal terminal voltages. This is obtained by adjustment of the incoming generator’s field strength. 2. Equal frequency. This is obtained by adjustment of the incoming generator’s prime-mover speed. 3. Phase voltages in proper phase relation. The procedure for synchronizing generators is not discussed in this chapter. At this point, it is enough for you to know that the above must be accomplished to prevent damage to the machines. Q21.   What generator characteristics must be considered when alternators are synchronized for parallel operation? SUMMARY This chapter has presented an introduction to the subject of alternators. You have studied the characteristics and applications of different types. The following information provides a summary of the chapter for your review. MAGNETIC INDUCTION is the process of inducing an emf in a coil whenever the coil is placed in a magnetic field and motion exists between the coil and the magnetic lines of flux. This is true if either the coil or the magnetic field moves, as long as the coil is caused to cut across magnetic flux lines.


Electrical News
Memory System Design Methods
Are you working with DDR4? Interested in NVDIMMs? Designing at...
eetimes.com
Makimoto's Wave Revisited for Multicore SoC Design
So predictable was the cycle of standardization and customization in...
eetimes.com
Mobile Benchmarks Need Work
The industry needs to put more effort into building better...
eetimes.com
EEVblog #645 – TRS-80 Model I Retro Computer Teardown
Dave looks inside the most popular microcomputer of the 1970′s,...
eevblog.com
Wearables Sing in Smart Clothes
The future of mainstream wearable technology may be driven by...
eetimes.com
ST Opens MEMS Microphone Test Laboratory
STMicroelectronics NV has set up an anechoic chamber in Taipei,...
eetimes.com
7 Insurance Issues With Your Self-Driving Car
People talk about the significant reduction in automotive insurance rates...
eetimes.com
Microsemi Bolsters FPGA Stance With Mingoa Acquisition
The Mingoa deal demonstrates Microsemi's push to gain market share...
eetimes.com
FAA Rules on Drones vs. Model Aircraft Contested
Proposed FAA dividing line between model aircraft and drones is...
eetimes.com
Think Different, Innovate by Reuse
It's time we slow down the fevered pace of new...
eetimes.com
Space Business Rising, Experts Say
The emerging commercial space sector is making progress but still...
eetimes.com
Connecting Islands of Industrial IoT
The Industrial Internet of Things often starts with a wealth...
eetimes.com
Graphene / Lithium Ion Capacitor Kickstarter BS
I’ve had a lot of people ask me to comment...
eevblog.com
Six Hour Workday? Sign Me Up!
The economists got it wrong when they though productivity gains...
eetimes.com
Geotracker Tags Unlicensed Band
We're tracking a startup budding from San Francisco's Internet of...
eetimes.com
Teardown.com: Amazon Brings Fire to Phone Market
Qualcomm is the primary provider of the key integrated circuits...
eetimes.com
What's That Smell? An App for That Soon, Says Sensirion
With the acquisition of neighbouring cloud business Koubachi AG, Zurich-based...
eetimes.com
Samsung's Silicon Valley Home
Samsung is building a 10-story complex in the heart of...
eetimes.com
Sony Invests in Stacked Image Sensor Manufacturing Capacity
Sony Corp. has said it plans to invest 35 billion...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +