1-2
INTRODUCTION
In NEETS, Module 6, Introduction to Electronic Emission, Tubes, and Power Supplies, you learned
that Thomas Edison's discovery of thermionic emission opened the door to electronic technology.
Progress was slow in the beginning, but each year brought new and more amazing discoveries. The
development of vacuum tubes soon led to the simple radio. Then came more complex systems of
communications. Modern systems now allow us to communicate with other parts of the world via
satellite. Data is now collected from space by probes without the presence of man because of
microelectronic technology.
Sophisticated control systems allow us to operate equipment by remote control in hazardous
situations, such as the handling of radioactive materials. We can remotely pilot aircraft from takeoff to
landing. We can make course corrections to spacecraft millions of miles from Earth. Space flight,
computers, and even video games would not be possible except for the advances made in
microelectronics.
The most significant step in modern electronics was the development of the transistor by Bell
Laboratories in 1948. This development was to solid-state electronics what the Edison Effect was to the
vacuum tube. The solid-state diode and the transistor opened the door to microelectronics.
MICROELECTRONICS is defined as that area of technology associated with and applied to the
realization of electronic systems made of extremely small electronic parts or elements. As discussed in
topic 2 of NEETS, Module 7, Introduction to Solid-State Devices and Power Supplies, the term
microelectronics is normally associated with integrated circuits (IC). Microelectronics is often thought to
include only integrated circuits. However, many other types of circuits also fall into the microelectronics
category. These will be discussed in greater detail under solid-state devices later in this topic.
During World War II, the need to reduce the size, weight, and power of military electronic systems
became important because of the increased use of these systems. As systems became more complex, their
size, weight, and power requirements rapidly increased. The increases finally reached a point that was
unacceptable, especially in aircraft and for infantry personnel who carried equipment in combat. These
unacceptable factors were the driving force in the development of smaller, lighter, and more efficient
electronic circuit components. Such requirements continue to be important factors in the development of
new systems, both for military and commercial markets. Military electronic systems, for example,
continue to become more highly developed as their capability, reliability, and maintainability is increased.
Progress in the development of military systems and steady advances in technology point to an ever-
increasing need for increased technical knowledge of microelectronics in your Navy job.
Q1. What problems were evident about military electronic systems during World War II?
Q2. What discovery opened the door to solid-state electronics?
Q3. What is microelectronics?
EVOLUTION OF MICROELECTRONICS
The earliest electronic circuits were fairly simple. They were composed of a few tubes, transformers,
resistors, capacitors, and wiring. As more was learned by designers, they began to increase both the size
and complexity of circuits. Component limitations were soon identified as this technology developed.