Quantcast TIME-DOMAIN REFLECTOMETRY

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
5-24 Q-7. When referring to spectrum analyzers, what is meant by the term resolving signals? TIME-DOMAIN REFLECTOMETRY TIME-DOMAIN REFLECTOMETRY is a testing and measurement technique that has found increasing usefulness in testing transmission lines (both metallic and fiber-optic), cables, strip lines, connectors, and other wideband systems or components. Basically, time-domain reflectometry is an extension of an earlier technique in which reflections from an electrical pulse were monitored to locate faults and to determine the characteristics of power transmission lines. You can compare time-domain reflectometry to a closed-loop radar system in which the transmitted signal, a very fast step pulse, is fed into the system and the reflections resulting from discontinuities or impedance deviations in the system are monitored on a crt. The technique used in time-domain reflectometry consists of feeding an impulse of energy into the system and then observing that energy as it is reflected by the system at the point of insertion. When the fast-rise input pulse meets with a discontinuity or impedance mismatch, the resultant reflections appearing at the feed point are compared in phase, time, and amplitude with the original pulse. By analyzing the magnitude, deviation, and shape of the reflected waveform, you can determine the nature of the impedance variation in the transmission system. Also, since distance is related to time and the amplitude of the reflected step is directly related to impedance, the comparison indicates the distance to the fault as well as the nature of the fault. Figure 5-25, view A, view B, view C, and view D, illustrates typical transmission line problems that can easily be identified by using a time-domain reflectometer (tdr). In addition to showing both the distance to and the nature (resistive, inductive, or capacitive) of each line discontinuity, time-domain reflectometry also reveals the characteristic impedance of the line and indicates whether losses are shunt or series. They are also used to locate and analyze connectors and splices. Figure 5-25A.—Time-domain reflectometer display of transmission line problems.


Electrical News
Google Gestures at 60 GHz
Google unveiled a radar-on-chip for fine gesture control with the...
eetimes.com
Google Unveils Smart Fabric Program
In what might be the largest development in smart fabrics,...
eetimes.com
Extraction Challenges Grow in Advanced Nanometer IC Design
Successive generations of foundry process technologies enable ever-increasing design density,...
eetimes.com
Sensor Data Analytics -- Unlocking Value in 'Big Data'
With data flowing from ubiquitous sensors, the new field known...
eetimes.com
Intel/Qualcomm: The Last Big Move
In the chip game, two big dominoes are waiting to...
eetimes.com
Can Formula E Overtake Formula One?
The Formula E race in Berlin was marred by the...
eetimes.com
EEVblog #748 – How Do Transistors Work?
Dave explains how BJT and MOSFET transistors work at the...
eevblog.com
Friday Quiz: Data Communications
Test your knowledge of the OSI 7-layer protocol stack....
eetimes.com
Can Analog Circuits Inspire Budding Engineers?
Let's face it: when most students looking think about what...
eetimes.com
Thank You, Albert Einstein for GPS
Crazy ideas like time slowing down with velocity or mass...
eetimes.com
Huawei vs. Xiaomi: China in Microcosm
Huawei's technological prowess in telecom and Xiaomi's agility in China's...
eetimes.com
Google Rolls Android M, IoT OS
Developers were audibly excited by the bevy of improvements and...
eetimes.com
Scale & Scalability -- The Keys to True FPGA-Based Verification
Scalable FPGA-based verification has become a serious alternative to big-box...
eetimes.com
A New Broadcom: The First Cuts
The proposed $37 billion merger of Avago and Broadcom creates...
eetimes.com
Micron Bullish On Coming Year
Company president Mark Adams sees poor PC DRAM performance stabilizing...
eetimes.com
When Did Analog Steal Digital's Mojo?
Name two semiconductor companies whose names begin with the letter...
eetimes.com
Avago-Broadcom Deal: What's in It for You?
Where is the affinity - or any apparent good vibe...
eetimes.com
FPGAs Ride HP's Moonshot
SRC Computers announced a new FPGA server card that Hewlett-Packard...
eetimes.com
NXP Agrees to RF Power Business Sell-Off
NXP Semiconductors strikes deal to sell its RF power business...
eetimes.com
Internet of Things Creates Opportunity Bubble for Analog
The analog devices play a special role in the Internet...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +