• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
Figure 4-8.System performance versus maximum range.
TR RECOVERY TIME

Neets Module 18-Radar Principles
Page Navigation
  126    127    128    129    130  131  132    133    134    135    136  
4-12 Before any measurements of receiver sensitivity can be made, the receiver must be accurately tuned to the transmitter frequency. If the receiver frequency differs from the transmitter frequency, the most likely cause is an improperly adjusted or malfunctioning local oscillator or transmitter frequency drift. Such problems can be caused by heat or aging components. Local oscillator tuning procedures differ widely according to the type of radar system; therefore, you should follow the tuning procedures in the system maintenance manuals. Two basic methods are used to measure radar receiver sensitivity. One is the PULSE METHOD, in which a pulse of measured amplitude and width is coupled to the receiver. In the second method, you use an fm generator to vary the signal generator output frequency across the receiver bandwidth. This latter method ensures the test signal is within the bandpass of the receiver. The sensitivity of the receiver is equal to the sum of the reading on the signal generator and the attenuations of the connecting cable and directional coupler. Receiver sensitivity is expressed as a negative dBm; for example, -90 dBm expresses the sensitivity of a receiver that can detect a signal 90 dB less than the 1-milliwatt reference level. A typical receiver sensitivity reading on a modern radar should be in the vicinity of -105 dBm. RECEIVER BANDWIDTH TEST Receiver bandwidth is defined as the frequency spread between the half-power points on the receiver response curve. Receiver bandwidth is specified for each radar, but wide variations are often tolerated. If either the bandwidth or the shape of the receiver response curve is not within tolerances, a detailed check of circuit components may be necessary. A considerable change in the value of circuit components is required to alter the response. You should check receiver response after any extensive repair to an IF amplifier. Figure 4-9 shows a typical response curve of a radar receiver. The half-power points are shown as 3 dB below maximum response. Since the curve is plotted in terms of voltage, these points are also represented by the 70.7 percent voltage points as shown in the figure. Figure 4-9.—Typical receiver response curve.






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.