• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
RECEIVER CHARACTERISTICS
Frequency Modulated Receiver

Neets Module 17-Radio-Frequency Communications Principles
Page Navigation
  26    27    28    29    30  31  32    33    34    35    36  
2-11 above the tuned frequency. As you approach the tuned frequency, the input level required to maintain a given output level will fall. As you pass the tuned frequency, the required input level will rise. Input voltage levels are then compared with frequency. They can be plotted on paper or you might view them on an oscilloscope. They would appear in the form of a response curve. The steepness of the response curve at the tuned frequency indicates the selectivity of the receiver. Fidelity The fidelity of a receiver is its ability to accurately reproduce, in its output, the signal that appears at its input. You will usually find the broader the band passed by frequency selection circuits, the greater your fidelity. You may measure fidelity by modulating an input frequency with a series of audio frequencies; you then plot the output measurements at each step against the audio input frequencies. The resulting curve will show the limits of reproduction. You should remember that good selectivity requires that a receiver pass a narrow frequency band. Good fidelity requires that the receiver pass a broader band to amplify the outermost frequencies of the sidebands. Receivers you find in general use are a compromise between good selectivity and high fidelity. Q11.   What four basic functions must a receiver perform? Q12.   What are the four basic receiver characteristics? SUPERHETERODYNE RECEIVER The superheterodyne is the type receiver most familiar to you. You probably see one daily in your home in the form of an AM and/or fm radio. We will discuss the basic workings of both AM and fm types and their differences. Amplitude Modulation Receiver Figure 2-9 shows a block diagram with waveforms of a typical AM superheterodyne receiver developed to overcome the disadvantages of earlier type receivers. Let’s assume you are tuning the receiver. When doing this you are actually changing the frequency to which the rf amplifier is tuned. The rf carrier comes in from the antenna and is applied to the rf amplifier. The output of the amplifier is an amplified carrier and is sent to the mixer. The mixer also receives an input from the local oscillator. These two signals are beat together to obtain the IF through the process of heterodyning. (Heterodyning will be further discussed later in this chapter and was covered in NEETS, Module 12, Modulation Principles.) At this time you should note the dotted lines connecting the local oscillator, rf amplifier, and the mixer. This is used on block diagrams and schematics to indicate GANGED TUNING. Ganged tuning is the process used to tune two or more circuits with a single control. In our example, when you change the frequency of the receiver all three stages change by the same amount. There is a fixed difference in frequency between the local oscillator and the rf amplifier at all times. This difference in frequency is the IF. This fixed difference and ganged tuning ensures a constant IF over the frequency range of the receiver.






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.