Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
4-13 SATELLITE ACQUISITION AND TRACKING An essential operation in communicating by satellite is the acquisition (locating) of the satellite by the earth terminal antenna and the subsequent tracking of the satellite. Initial acquisition depends upon an exact knowledge of the position of the satellite. In combination with the geographic location of the earth terminal, knowing the position of the satellite enables you to compute accurate antenna pointing information. The degree of difficulty in locating and tracking a satellite is determined largely by what type orbit the satellite is in. The locating and tracking of a synchronous satellite is relatively simple. This is because the satellite appears to be stationary. Locating a near-synchronous satellite is also relatively simple because of the slow relative motion of the satellite However, the movement of a near-synchronous satellite is enough that accurate tracking is required to keep the narrow beam antenna pointed toward the satellite. Satellites in medium altitude circular orbits or in elliptical orbits are more difficult to acquire and to track because of the rapid changes in position. Orbital Prediction To acquire and track a satellite in space, the earth terminal antennas must be provided with very accurate pointing information. Antenna pointing information is based upon the orbital prediction of the satellite. This information is derived from an EPHEMERIS table. This table provides the coordinates of a satellite or a celestial body at specific times during a given period. After you know the ephemeris data of a satellite, you can predict for any given location the apparent track of the satellite as viewed from that location. The constants defining an orbit are initially obtained by the process of tracking. At the time of launch, the rocket is tracked by radar from lift-off to orbit and then until it passes out of sight. Tracking data obtained in this way is sufficient for making rough predictions of the orbit. These predictions are made rapidly with a computer and sent to tracking stations all over the world. These other tracking stations watch for the satellite during its first trip and record additional data. During the first week of orbiting, tracking stations all around the world are obtaining progressively more accurate data concerning the Satellite. This data is put into a computer where corrections of earlier estimates of the orbit are made. Once the initial predictions are complete and the satellite link becomes operational, very little change in these calculations is made. The orbits of a satellite will change slightly over a period of time; however, these changes are so gradual that predictions will be accurate enough to be used for weeks or even months without further corrections. When the orbits are known precisely, an ephemeris can be calculated for each satellite of the system. Antenna Pointing Antenna pointing instructions for each satellite must be computed separately for each ground station location. A satellite that bears due south of station A at an elevation of 25 degrees may simultaneously bear due southeast of station B at an elevation of 30 degrees. Antenna pointing instructions are determined by taking into consideration the orbital prediction and the latitude and longitude of each ground station. To establish radio contact with a satellite, the ground station needs to know the bearing and elevation of a satellite. This allows the antenna to be properly pointed.

Electrical News
Smart Factories Meet AI
The German Research Center for Artificial Intelligence (DFKI) has 47...
Parasitic Extraction of FinFET-based Memory Cells
Memory chips must meet strict specifications for fast data transfer,...
It's Time to Stop Kicking the EDA Dog
It's incumbent on IP vendors to deliver higher quality designs...
EEVblog #747 – PC Based Logic Analyser Project
Dave goes back 20 years and find an old PC...
Test Equipment Changes With Moore's Law
New technologies continue to forge new types of test equipment....
Force Sensors Make Medical Devices Smarter
The practice of medicine has always been an art as...
Development Kit Targets Motion Control Design
TI's DesignDRIVE gives motion control developers a sandbox in which...
New Tool Automates Register Verification Process for FPGA, SoC & IP Designs
Registers are one of the first aspects of the design...
How the Apple Watch Can Collect Patient Data
A project in southern New Jersey is using Apple Watches...
Intel, Altera, Moore...and Drinks
The on-again, off-again Intel/Altera acquisition was the talk of a...
Huawei's Everything-Connected Game Plan
As Chinese Internet companies like Tencent, Alibaba and Xiaomi bulldoze...
Samsung Ramps 10nm in 2016
Samsung said its 10nm FinFET process node will be in...
Friday Quiz: Losses in Power Devices
Power devices such as MOSFETs and IGBTs can waste power...
HP Strikes China Deal, Sales Slump
The same day it reported declining quarterly results, Hewlett-Packard announced...
Robot Revolution Initiative Launches in Japan
Seeking to lead the "robot revolution," Japan has initiated development...
Quarter-Sized, Magnetically Stackable Modules for Students and Makers
mCookies are small, powerful, Arduino-compatible modules for makers, designers, engineers,...
Apple Watch Lacks Pulse, Says Startup
Bloom Technologies aims to pave the way toward medical-grade wearables...
Mao Zedong & Little Red Internet
Linking Internet leaders like Jack Ma with Chairman Mao...
Self-Driving Cars Without Passengers
Forschungszentrum Informatik (FZI) is aiming for self-driving cars that you...
Apple Watch, Android Wear Updates Begin
The first update for the Apple Watch makes performance improvements...

Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +