Quantcast SATELLITE ACQUISITION AND TRACKING

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-13 SATELLITE ACQUISITION AND TRACKING An essential operation in communicating by satellite is the acquisition (locating) of the satellite by the earth terminal antenna and the subsequent tracking of the satellite. Initial acquisition depends upon an exact knowledge of the position of the satellite. In combination with the geographic location of the earth terminal, knowing the position of the satellite enables you to compute accurate antenna pointing information. The degree of difficulty in locating and tracking a satellite is determined largely by what type orbit the satellite is in. The locating and tracking of a synchronous satellite is relatively simple. This is because the satellite appears to be stationary. Locating a near-synchronous satellite is also relatively simple because of the slow relative motion of the satellite However, the movement of a near-synchronous satellite is enough that accurate tracking is required to keep the narrow beam antenna pointed toward the satellite. Satellites in medium altitude circular orbits or in elliptical orbits are more difficult to acquire and to track because of the rapid changes in position. Orbital Prediction To acquire and track a satellite in space, the earth terminal antennas must be provided with very accurate pointing information. Antenna pointing information is based upon the orbital prediction of the satellite. This information is derived from an EPHEMERIS table. This table provides the coordinates of a satellite or a celestial body at specific times during a given period. After you know the ephemeris data of a satellite, you can predict for any given location the apparent track of the satellite as viewed from that location. The constants defining an orbit are initially obtained by the process of tracking. At the time of launch, the rocket is tracked by radar from lift-off to orbit and then until it passes out of sight. Tracking data obtained in this way is sufficient for making rough predictions of the orbit. These predictions are made rapidly with a computer and sent to tracking stations all over the world. These other tracking stations watch for the satellite during its first trip and record additional data. During the first week of orbiting, tracking stations all around the world are obtaining progressively more accurate data concerning the Satellite. This data is put into a computer where corrections of earlier estimates of the orbit are made. Once the initial predictions are complete and the satellite link becomes operational, very little change in these calculations is made. The orbits of a satellite will change slightly over a period of time; however, these changes are so gradual that predictions will be accurate enough to be used for weeks or even months without further corrections. When the orbits are known precisely, an ephemeris can be calculated for each satellite of the system. Antenna Pointing Antenna pointing instructions for each satellite must be computed separately for each ground station location. A satellite that bears due south of station A at an elevation of 25 degrees may simultaneously bear due southeast of station B at an elevation of 30 degrees. Antenna pointing instructions are determined by taking into consideration the orbital prediction and the latitude and longitude of each ground station. To establish radio contact with a satellite, the ground station needs to know the bearing and elevation of a satellite. This allows the antenna to be properly pointed.


Electrical News
Europe vs. Google
Google may not give much thanks for the gift Europe...
eetimes.com
Stephen Hawking: How He Speaks & Spells
The technology that helped resurrect the life of Stephen Hawking...
eetimes.com
Sony's 3-Year Plan: Treading Water or Just Sinking?
Sony's three-year outlook for its mobile business "isn't aiming for...
eetimes.com
HMC Spec Update Signals Healthy Adoption
The release of the Hybrid Memory Cube specification 2.0, along...
eetimes.com
Power Week: Si-Based Power Discretes to Continue to Dominate Over Next Decade
Discrete power electronics are predicted to become a $23 billion...
eetimes.com
Book Review: Deadly Odds by Allen Wyler
This is a great read that will have you on...
eetimes.com
Supercapacitors: A New Hero in the Spotlight
Today's supercapacitors are being used to replace rechargeable batteries in...
eetimes.com
EEVblog #687 – EFTPOS PIN Pad Terminal Teardown
What’s inside a smart card pinpad EFTPOS terminal? Dave looks...
eevblog.com
Your Part in the Recovery
Engineers and innovators are central to the slow but ongoing...
eetimes.com
Motor Controllers Offer Improved Noise Immunity
Operating at 5V gives these digital signal controllers enhanced noise...
eetimes.com
NXP to Pick Up Its Missing IoT Link - Bluetooth Low Energy
In pursuit of the Internet of Things market, NXP Semiconductors...
eetimes.com
USB Oscilloscopes Get Beta Drivers for Open-Source Hardware
Pico Technology has released beta versions of drivers for BeagleBoneBlack...
eetimes.com
It's Alive! The 3D Printing of Living Tissues
Within a generation, we likely will not just hear of...
eetimes.com
Curiosity Killed the Cat (Just Call Me Mr. Curiosity)
Max desperately needs a cat deterrent, but how should this...
eetimes.com
Memory Design Articles: Diagnostics, Datacenters & Failures
Here's a roundup of recent design articles that are relevant...
eetimes.com
Megachips to Launch DSP-Based Sensor Fusion IC
The growing sensor-fusion controller market for smartphones and wearable devices...
eetimes.com
MediaTek Plans $49 Million Investment in China's Chip Fund
Taiwan's largest chip designer has announced it will invest $48.9...
eetimes.com
Reduce Noise When Making M-PHY Measurements
To make useful measurements on M-PHY Gear 3, you need...
eetimes.com
EEVblog #686 – Mailbag
A monster sized high definition 50fps Mailbag, with two special...
eevblog.com
Startup to Open Source Parallel CPU
Rex Computing plans a parallel processor that could deliver a...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +