• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
Figure 2-15B.Varactor symbol and schematic. SIMPLIFIED CIRCUIT.
Figure 2-19.Carrier with and without modulation.

Neets Module 12-Modulation Principles
Page Navigation
  92    93    94    95    96  97  98    99    100    101    102  
2-22 PHASE MODULATION Frequency modulation requires the oscillator frequency to deviate both above and below the carrier frequency. During the process of frequency modulation, the peaks of each successive cycle in the modulated waveform occur at times other than they would if the carrier were unmodulated. This is actually an incidental phase shift that takes place along with the frequency shift in fm. Just the opposite action takes place in phase modulation. The af signal is applied to a PHASE MODULATOR in pm. The resultant wave from the phase modulator shifts in phase, as illustrated in figure 2-17. Notice that the time period of each successive cycle varies in the modulated wave according to the audio-wave variation. Since frequency is a function of time period per cycle, we can see that such a phase shift in the carrier will cause its frequency to change. The frequency change in fm is vital, but in pm it is merely incidental. The amount of frequency change has nothing to do with the resultant modulated wave shape in pm. At this point the comparison of fm to pm may seem a little hazy, but it will clear up as we progress. Figure 2-17.—Phase modulation. Let’s review some voltage phase relationships. Look at figure 2-18 and compare the three voltages (A, B, and C). Since voltage A begins its cycle and reaches its peak before voltage B, it is said to lead voltage B. Voltage C, on the other hand, lags voltage B by 30 degrees. In phase modulation the phase of the carrier is caused to shift at the rate of the af modulating signal. In figure 2-19, note that the unmodulated carrier has constant phase, amplitude, and frequency. The dotted wave shape represents the modulated carrier. Notice that the phase on the second peak leads the phase of the unmodulated carrier. On the third peak the shift is even greater; however, on-the fourth peak, the peaks begin to realign phase with each other. These relationships represent the effect of 1/2 cycle of an af modulating signal. On the negative alternation of the af intelligence, the phase of the carrier would lag and the peaks would occur at times later than they would in the unmodulated carrier. Figure 2-18.—Phase relationships.






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.