Quantcast TRANSMISSION LOSSES

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-27 Figure 2-21.—Multipath transmission. Multipath fading may be minimized by practices called SPACE DIVERSITY and FREQUENCY DIVERSITY. In space diversity, two or more receiving antennas are spaced some distance apart. Fading does not occur simultaneously at both antennas; therefore, enough output is almost always available from one of the antennas to provide a useful signal. In frequency diversity, two transmitters and two receivers are used, each pair tuned to a different frequency, with the same information being transmitted simultaneously over both frequencies. One of the two receivers will almost always provide a useful signal. Selective Fading Fading resulting from multipath propagation is variable with frequency since each frequency arrives at the receiving point via a different radio path. When a wide band of frequencies is transmitted simultaneously, each frequency will vary in the amount of fading. This variation is called SELECTIVE FADING. When selective fading occurs, all frequencies of the transmitted signal do not retain their original phases and relative amplitudes. This fading causes severe distortion of the signal and limits the total signal transmitted. Q23.   What is the skip zone of a radio wave? Q24.   Where does the greatest amount of ionospheric absorption occur in the ionosphere? Q25.   What is meant by the term "multipath"? Q26.   When a wide band of frequencies is transmitted simultaneously, each frequency will vary in the amount of fading. What is this variable fading called? TRANSMISSION LOSSES All radio waves propagated over ionospheric paths undergo energy losses before arriving at the receiving site. As we discussed earlier, absorption in the ionosphere and lower atmospheric levels account for a large part of these energy losses. There are two other types of losses that also significantly affect the ionospheric propagation of radio waves. These losses are known as ground reflection loss and free space loss. The combined effects of absorption, ground reflection loss, and free space loss account for most of the energy losses of radio transmissions propagated by the ionosphere.


Electrical News
eBook Explains Faster In-System Flash Programming
"Faster Flash Programming via FPGA and IJTAG" from ASSET Intertech...
eetimes.com
Quantum Computing: Diode-like Breakthrough Surmounts Roadblock
Quantum computers need a component like a diode, that only...
eetimes.com
There's No Shame in ReRAM
Intel and Micron say they've developed a new class of...
eetimes.com
Chinese Automotive Chip Market Continues Rapid Growth
Even as growth shipments in vehicle shipments in China slows,...
eetimes.com
UMC Cuts Expectations for 28nm Ramp on Weaker Demand
United Microelectronics Corp. (UMC), the world's second-largest foundry, said its...
eetimes.com
Metallic Nanoparticles May Lower Solar Cost
While the domestic solar energy industry grew 34% last year,...
eetimes.com
Multi-layer security needed for Industrial IoT
Industrial networks are increasingly vulnerable to cyber attacks. Their security...
eetimes.com
What's Next for Wearables?
Wearables have the power to transform the world around us...
eetimes.com
Demand for Radar Systems Boosts Infineon's Chip Production
Radar systems are experience rapidly growing acceptance among car buyers....
eetimes.com
Intel, Micron Launch "Bulk-Switching" ReRAM
Intel Corp. and Micron Technology Inc. have launched a new...
eetimes.com
Chips in Space -- MacSpace, A Record Throughput Multi-Core Processor for Satellites
MacSpace is a collaborative R&D project aiming to research and...
eetimes.com
Smart Meters Can Destabilize Grid, Study Says
In some geographies including Germany, smart meters are mandatory for...
eetimes.com
Ams Buys NXP Sensor Business
The acquisition adds advanced monolithic and integrated CMOS sensors to...
eetimes.com
Your Favorite SciFi in Audio Form for Free
Web sites such as Open Culture and the Internet Archive...
eetimes.com
7 Tips for Overcoming PCB Electromagnetic Issues
Faced with the challenges of new materials and new components,...
eetimes.com
IoT Accelerators Offer Advice to Entrepreneurs
Startup accelerator experts panel offers IoT entrepreneurs insights into Kickstarter,...
eetimes.com
Graphene Sensor Detects Nano Molecules
Researchers use graphene to improve upon infrared absorption spectroscopy for...
eetimes.com
Apple HomeKit Requires ID Chip
Apple requires an ID chip in devices using its HomeKit...
eetimes.com
5 Biggest IoT Security Blunders
A Bluetooth expert debunks myths and untangles messy methodologies that...
eetimes.com
EEVblog #772 – How To Calculate Wasted Battery Capacity
In this tutorial Dave explains how to precisely measure and...
eevblog.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +