Quantcast TRANSMISSION LOSSES

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-27 Figure 2-21.—Multipath transmission. Multipath fading may be minimized by practices called SPACE DIVERSITY and FREQUENCY DIVERSITY. In space diversity, two or more receiving antennas are spaced some distance apart. Fading does not occur simultaneously at both antennas; therefore, enough output is almost always available from one of the antennas to provide a useful signal. In frequency diversity, two transmitters and two receivers are used, each pair tuned to a different frequency, with the same information being transmitted simultaneously over both frequencies. One of the two receivers will almost always provide a useful signal. Selective Fading Fading resulting from multipath propagation is variable with frequency since each frequency arrives at the receiving point via a different radio path. When a wide band of frequencies is transmitted simultaneously, each frequency will vary in the amount of fading. This variation is called SELECTIVE FADING. When selective fading occurs, all frequencies of the transmitted signal do not retain their original phases and relative amplitudes. This fading causes severe distortion of the signal and limits the total signal transmitted. Q23.   What is the skip zone of a radio wave? Q24.   Where does the greatest amount of ionospheric absorption occur in the ionosphere? Q25.   What is meant by the term "multipath"? Q26.   When a wide band of frequencies is transmitted simultaneously, each frequency will vary in the amount of fading. What is this variable fading called? TRANSMISSION LOSSES All radio waves propagated over ionospheric paths undergo energy losses before arriving at the receiving site. As we discussed earlier, absorption in the ionosphere and lower atmospheric levels account for a large part of these energy losses. There are two other types of losses that also significantly affect the ionospheric propagation of radio waves. These losses are known as ground reflection loss and free space loss. The combined effects of absorption, ground reflection loss, and free space loss account for most of the energy losses of radio transmissions propagated by the ionosphere.


Electrical News
EEVblog #719 – Sony Low Noise Audiophile SDXC Memory Card
Sony have released a new Audiophile / Audiophool “Low Noise”...
eevblog.com
Transactors -- Expanding the Role of FPGA-Based Prototypes
FPGA-based prototypes offer unbeatable flexibility, capacity, and speed. Extending their...
eetimes.com
Awesome 3D Electronic Sculptures
These little beauties are created using thousands of discrete components...
eetimes.com
Graphene Polymer Speeds Electron Transport
Depositing conducting polymers on graphene gives then highly desirable electrical...
eetimes.com
Vision Explosion Requires Mobile Architecture Rethink
CEVA's Eran Briman examines the explosion in vision processing and...
eetimes.com
ECC Brings Reliability and Power Efficiency to Mobile Devices
Error correcting code increases memory density and bandwidth while maintaining...
eetimes.com
Friday Quiz: Spectrum and Network Measurements
Wireless is everywhere, but not without spectral measurements....
eetimes.com
LTE-U for Small Cells Improves Wi-Fi Environment
In LTE-U, LTE technology over an unlicensed band is paired...
eetimes.com
Web Giants Dictate Road Maps
Big data centers such as Amazon, Google and Facebook are...
eetimes.com
IoT Terrain Still Shifting
The Internet of Things continues to fragment with competing networks...
eetimes.com
Infineon: CAN FD Success Goes at Expense of FlexRay
The faster version of the venerable CAN bus, CAN FD...
eetimes.com
Maker Faire Sydney – Trends in Hardware Innovation Fireside Chat
2014 Sydney Maker Faire Power House Museum 17/8/2014 Trends in...
eevblog.com
Apple's March 9 Event: Is It Time For The Apple Watch?
Apple fans and non-fans alike are waiting to "watch" what...
eetimes.com
Tessera Buys Smart Sensors for Iris Recognition
FotoNation Limited, a wholly owned subsidiary of chip packaging company...
eetimes.com
Hi-Speed Transistors from Liquid Processing
A University of Chicago lab has invented a new kind...
eetimes.com
An Appetizing Archive of Propitious & Pragmatic Resources
EE Times blogger Adam Taylor has created a website containing...
eetimes.com
ESC Boston 2015 Sneak Peek -- Open Source Electromagnetic Trackers
Here's a sneak peek at one of the presentations to...
eetimes.com
Radars Can't Spot Mysterious Drones over Paris
Unidentified drones were spotted in the skies above Paris two...
eetimes.com
18 Views of ISSCC
Engineers showed advances in lower power, higher performance and media-rich...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +