Quantcast COMPARISON OF LIGHT WAVES WITH SOUND WAVES

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-32 COMPARISON OF LIGHT WAVES WITH SOUND WAVES There are two main differences between sound waves and light waves. The first difference is in velocity. Sound waves travel through air at the speed of approximately 1,100 feet per second; light waves travel through air and empty space at a speed of approximately 186,000 miles per second. The second difference is that sound is composed of longitudinal waves (alternate compressions and expansions of matter) and light is composed of transverse waves in an electromagnetic field. Although both are forms of wave motion, sound requires a solid, liquid, or gaseous medium; whereas light travels through empty space. The denser the medium, the greater the speed of sound. The opposite is true of light. Light travels approximately one-third slower in water than in air. Sound travels through all substances, but light cannot pass through opaque materials. Frequency affects both sound and light. A certain range of sound frequencies produces sensations that you can hear. A slow vibration (low frequency) in sound gives the sensation of a low note. A more rapid sound vibration (higher frequency) produces a higher note. Likewise, a certain range of light frequencies produces sensations that you can see. Violet light is produced at the high-frequency end of the light spectrum, while red light is produced at the low-frequency end of the light spectrum. A change in frequency of sound waves causes an audible sensation—a difference in pitch. A change in the frequency of a light wave causes a visual sensation—a difference in color. For a comparison of light waves with sound waves, see table 1-2. Table 1-2.—Comparison of Light Waves and Sound Waves SOUND WAVES LIGHT WAVES VELOCITY IN AIR APPROXIMATELY 1,100 FEET PER SECOND APPROXIMATELY 186,000 MILES PER SECOND FORM A FORM OF WAVE MOTION A FORM OF WAVE MOTION WAVE COMPOSITION LONGITUDINAL TRANSVERSE TRANSMITTING MEDIUM ALL SUBSTANCES EMPTY SPACE AND ALL SUBSTANCES EXCEPT OPAQUE MATERIALS RELATION OF TRANSMITTING MEDIUM VELOCITY TO VELOCITY THE DENSER THE MEDIUM, THE GREATER THE SPEED THE DENSER THE MEDIUM, THE SLOWER THE SPEED SENSATIONS PRODUCED HEARING SEEING VARIATIONS IN SENSATIONS PRODUCED A LOW FREQUENCY CAUSES A LOW NOTE; A HIGH FREQUENCY, A HIGH NOTE A LOW FREQUENCY CAUSES RED LIGHT; A HIGH FREQUENCY, VIOLET LIGHT Q42.   What three examples of electromagnetic energy are mentioned in the text? Q43.   What is the main difference between the bulk of the electromagnetic spectrum and the visual spectrum?


Electrical News
It's Alive! The 3D Printing of Living Tissues
Within a generation, we likely will not just hear of...
eetimes.com
Curiosity Killed the Cat (Just Call Me Mr. Curiosity)
Max desperately needs a cat deterrent, but how should this...
eetimes.com
Memory Design Articles: Diagnostics, Datacenters & Failures
Here's a roundup of recent design articles that are relevant...
eetimes.com
Megachips to Launch DSP-Based Sensor Fusion IC
The growing sensor-fusion controller market for smartphones and wearable devices...
eetimes.com
MediaTek Plans $49 Million Investment in China's Chip Fund
Taiwan's largest chip designer has announced it will invest $48.9...
eetimes.com
Reduce Noise When Making M-PHY Measurements
To make useful measurements on M-PHY Gear 3, you need...
eetimes.com
EEVblog #686 – Mailbag
A monster sized high definition 50fps Mailbag, with two special...
eevblog.com
Startup to Open Source Parallel CPU
Rex Computing plans a parallel processor that could deliver a...
eetimes.com
OCZ Cuts Into Read-Intensive SSD Segment
The SATA-based Saber 1000 Series is yet another option in...
eetimes.com
Infotainment Systems Drive Automotive SSD Adoption
In-vehicle entertainment and navigation systems are becoming more mainstream and...
eetimes.com
Scaling Up Text Rendering on Scaled-Down Devices
The need to support a widening range of languages and...
eetimes.com
What Is Design-to-Cost & Why Does It Matter?
Design-to-Cost should be part of your design process. With a...
eetimes.com
Can Japan Get Her Groove Back With IoT?
Japan once looked like a world leader in smart home...
eetimes.com
The 10 Commandments of Electronics
Although these 'commandments' are presented in a humorous manner, they...
eetimes.com
Broadband Demand Hits the High Seas
Cruise ship operators Royal Caribbean and Carnival are exploring new...
eetimes.com
Anritsu ShockLine VNAs Receive Frost & Sullivan Award
Its line of "faceless" VNA used for production RF T&M...
eetimes.com
Creating an 8x8x8 3D LED Cube: The Base PCB
Creating an 8x8x8 3D tri-color LED cube from the ground...
eetimes.com
Allocating MCU Resources Accurately
When you need a new MCU and new I/O for...
eetimes.com
Experts Call for Secure Sensors
Sensor nodes are the most vulnerable point of attack in...
eetimes.com
AMD Integrates X86, GPU & I/O
Early next year, AMD will ship Carrizo, its most integrated...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +