Quantcast CHARACTERISTICS OF SOUND

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-19 The material through which sound waves travel is called the medium. The density of the medium determines the ease, distance, and speed of sound transmission. The higher the density of the medium, the slower sound travels through it. The detector acts as the receiver of the sound wave. Because it does not surround the source of the sound wave, the detector absorbs only part of the energy from the wave and sometimes requires an amplifier to boost the weak signal. As an illustration of what happens if one of these three elements is not present, let’s refer to our experiment in which a bell was placed in a jar containing a vacuum. You could see the bell being struck, but you could hear no sound because there was no medium to transmit sound from the bell to you. Now let’s look at another example in which the third element, the detector, is missing. You see a source (such as an explosion) apparently producing a sound, and you know the medium (air) is present, but you are too far away to hear the noise. Thus, as far as you are concerned, there is no detector and, therefore, no sound. We must assume, then, that sound can exist only when a source transmits sound through a medium, which passes it to a detector. Therefore, in the absence of any one of the basic elements (source, medium, detector) there can be NO sound. Q18.   Sound waves transmitted from a source are sometimes weak when they reach the detector. What instrument is needed to boost the weak signal? TERMS USED IN SOUND WAVES Sound waves vary in length according to their frequency. A sound having a long wavelength is heard at a low pitch (low frequency); one with a short wavelength is heard at a high pitch (high frequency). A complete wavelength is called a cycle. The distance from one point on a wave to the corresponding point on the next wave is a wavelength. The number of cycles per second (hertz) is the frequency of the sound. The frequency of a sound wave is also the number of vibrations per second produced by the sound source. Q19.   What are the three basic requirements for sound? CHARACTERISTICS OF SOUND Sound waves travel at great distances in a very short time, but as the distance increases the waves tend to spread out. As the sound waves spread out, their energy simultaneously spreads through an increasingly larger area. Thus, the wave energy becomes weaker as the distance from the source is increased. Sounds may be broadly classified into two general groups. One group is NOISE, which includes sounds such as the pounding of a hammer or the slamming of a door. The other group is musical sounds, or TONES. The distinction between noise and tone is based on the regularity of the vibrations, the degree of damping, and the ability of the ear to recognize components having a musical sequence. You can best understand the physical difference between these kinds of sound by comparing the waveshape of a musical note, depicted in view A of figure 1-13, with the waveshape of noise, shown in view B. You can see by the comparison of the two waveshapes, that noise makes a very irregular and haphazard curve and a musical note makes a uniform and regular curve.


Electrical News
Smart Factories Meet AI
The German Research Center for Artificial Intelligence (DFKI) has 47...
eetimes.com
Parasitic Extraction of FinFET-based Memory Cells
Memory chips must meet strict specifications for fast data transfer,...
eetimes.com
It's Time to Stop Kicking the EDA Dog
It's incumbent on IP vendors to deliver higher quality designs...
eetimes.com
EEVblog #747 – PC Based Logic Analyser Project
Dave goes back 20 years and find an old PC...
eevblog.com
Test Equipment Changes With Moore's Law
New technologies continue to forge new types of test equipment....
eetimes.com
Force Sensors Make Medical Devices Smarter
The practice of medicine has always been an art as...
eetimes.com
Development Kit Targets Motion Control Design
TI's DesignDRIVE gives motion control developers a sandbox in which...
eetimes.com
New Tool Automates Register Verification Process for FPGA, SoC & IP Designs
Registers are one of the first aspects of the design...
eetimes.com
How the Apple Watch Can Collect Patient Data
A project in southern New Jersey is using Apple Watches...
eetimes.com
Intel, Altera, Moore...and Drinks
The on-again, off-again Intel/Altera acquisition was the talk of a...
eetimes.com
Huawei's Everything-Connected Game Plan
As Chinese Internet companies like Tencent, Alibaba and Xiaomi bulldoze...
eetimes.com
Samsung Ramps 10nm in 2016
Samsung said its 10nm FinFET process node will be in...
eetimes.com
Friday Quiz: Losses in Power Devices
Power devices such as MOSFETs and IGBTs can waste power...
eetimes.com
HP Strikes China Deal, Sales Slump
The same day it reported declining quarterly results, Hewlett-Packard announced...
eetimes.com
Robot Revolution Initiative Launches in Japan
Seeking to lead the "robot revolution," Japan has initiated development...
eetimes.com
Quarter-Sized, Magnetically Stackable Modules for Students and Makers
mCookies are small, powerful, Arduino-compatible modules for makers, designers, engineers,...
eetimes.com
Apple Watch Lacks Pulse, Says Startup
Bloom Technologies aims to pave the way toward medical-grade wearables...
eetimes.com
Mao Zedong & Little Red Internet
Linking Internet leaders like Jack Ma with Chairman Mao...
eetimes.com
Self-Driving Cars Without Passengers
Forschungszentrum Informatik (FZI) is aiming for self-driving cars that you...
eetimes.com
Apple Watch, Android Wear Updates Begin
The first update for the Apple Watch makes performance improvements...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +