Quantcast CHARACTERISTICS OF SOUND

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-19 The material through which sound waves travel is called the medium. The density of the medium determines the ease, distance, and speed of sound transmission. The higher the density of the medium, the slower sound travels through it. The detector acts as the receiver of the sound wave. Because it does not surround the source of the sound wave, the detector absorbs only part of the energy from the wave and sometimes requires an amplifier to boost the weak signal. As an illustration of what happens if one of these three elements is not present, let’s refer to our experiment in which a bell was placed in a jar containing a vacuum. You could see the bell being struck, but you could hear no sound because there was no medium to transmit sound from the bell to you. Now let’s look at another example in which the third element, the detector, is missing. You see a source (such as an explosion) apparently producing a sound, and you know the medium (air) is present, but you are too far away to hear the noise. Thus, as far as you are concerned, there is no detector and, therefore, no sound. We must assume, then, that sound can exist only when a source transmits sound through a medium, which passes it to a detector. Therefore, in the absence of any one of the basic elements (source, medium, detector) there can be NO sound. Q18.   Sound waves transmitted from a source are sometimes weak when they reach the detector. What instrument is needed to boost the weak signal? TERMS USED IN SOUND WAVES Sound waves vary in length according to their frequency. A sound having a long wavelength is heard at a low pitch (low frequency); one with a short wavelength is heard at a high pitch (high frequency). A complete wavelength is called a cycle. The distance from one point on a wave to the corresponding point on the next wave is a wavelength. The number of cycles per second (hertz) is the frequency of the sound. The frequency of a sound wave is also the number of vibrations per second produced by the sound source. Q19.   What are the three basic requirements for sound? CHARACTERISTICS OF SOUND Sound waves travel at great distances in a very short time, but as the distance increases the waves tend to spread out. As the sound waves spread out, their energy simultaneously spreads through an increasingly larger area. Thus, the wave energy becomes weaker as the distance from the source is increased. Sounds may be broadly classified into two general groups. One group is NOISE, which includes sounds such as the pounding of a hammer or the slamming of a door. The other group is musical sounds, or TONES. The distinction between noise and tone is based on the regularity of the vibrations, the degree of damping, and the ability of the ear to recognize components having a musical sequence. You can best understand the physical difference between these kinds of sound by comparing the waveshape of a musical note, depicted in view A of figure 1-13, with the waveshape of noise, shown in view B. You can see by the comparison of the two waveshapes, that noise makes a very irregular and haphazard curve and a musical note makes a uniform and regular curve.


Electrical News
CFP IPSN 2016
The ACM/IEEE International Conference on Information Processing in Sensor Networks...
wsnblog.com
Silicon Valley's Longest-Serving CEO Beginning New Chapter
With the impending close of Microchip's $840 million acquisition of...
eetimes.com
EEVblog #774 – Low Battery Discharge Testing Part 1
Dave shows how to do discharge testing on AAA and...
eevblog.com
Perambulating & Texting -- Dazed & Confused
It seems that walking while texting is becoming endemic; so...
eetimes.com
IBM Takes A Second Turn at PCM Drift
Another approach taken by IBM and Macronix to address phase...
eetimes.com
The Next Big Thing Is The Continuum
What will come next for us? Internet of Everything, wearables,...
eetimes.com
Making EDA Exciting Again
There are still plenty of exciting challenges out there for...
eetimes.com
Turing Test -- Are You Talking to a Human or a Machine?
Imagine you are allowed to pose five questions to determine...
eetimes.com
MediaTek Cautions 'Weak Demand' for Handsets
MediaTek has pared its expectations for 2015 as a result...
eetimes.com
Patent Search Supports View 3D XPoint Based on Phase-Change
Is 3D XPoint non-volatile memory really just a version of...
eetimes.com
Industrial Automation Companies Combine
Japan's Omron is acquiring US-based Delta Tau Data Systems....
eetimes.com
Friday Quiz: Oscilloscopes
So, you use an oscilloscope every day? Well then, you...
eetimes.com
Hybrid Solar Cells Capture More
Solar cells today waste as much as 44 percent of...
eetimes.com
Google Street View Cars Test The Air
Environmental sensor firm Aclima has partnered with Google to test...
eetimes.com
Inventables X-Carve LIVE Build Part 3 + Batteriser Rant
Part 3 of Dave & David2 assembling the Inventables X-Carve...
eevblog.com
Inventables X-Carve Time Lapse Build
Time lapse footage of Dave & David 2 assembled the...
eevblog.com
Samsung's Slippage Stirs Smartphone Angst
Samsung's downbeat outlook is stirring up worries over the global...
eetimes.com
Imec, Panasonic Push Progress on ReRAM
The two companies jointly presented a paper at the recent...
eetimes.com
Patents: Exercises in Futility and Incomprehensibility?
Learning anything from patent documents has to be one of...
eetimes.com
The Best Way to Store Morse Code in C
In which we compare two approaches to store and manipulate...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +