Quantcast End-Fire Arrays

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-33 elements that may be used. The construction problem increases with the number of elements, especially when they are polarized horizontally. Q32.   What is the primary cause of broadside arrays losing efficiency when not operating at their designed frequency? Q33.   When more than two elements are used in a broadside array, how are the elements arranged? Q34.   As the spacing between elements in a broadside array increases, what is the effect on the major lobes? End-Fire Arrays An end-fire array looks similar to a broadside array. The ladder-like appearance is characteristic of both (fig. 4-28, view A). The currents in the elements of the end-fire array, however, are usually 180 degrees out of phase with each other as indicated by the arrows. The construction of the end-fire array is like that of a ladder lying on its side (elements horizontal). The dipoles in an end-fire array are closer together (1/8-wavelength to 1/4 -wavelength spacing) than they are for a broadside array. Figure 4-28.—Typical end-fire array. Closer spacing between elements permits compactness of construction. For this reason an end-fire array is preferred to other arrays when high gain or sharp directivity is desired in a confined space. However, the close coupling creates certain disadvantages. Radiation resistance is extremely low, sometimes as low as 10 ohms, making antenna losses greater. The end-fire array is confined to a single frequency. With changes in climatic or atmospheric conditions, the danger of detuning exists. RADIATION PATTERN.—The radiation pattern for a pair of parallel half-wave elements fed 180 degrees out of phase is shown in figure 4-29, view A. The elements shown are spaced 1/2 wavelength apart. In practice, smaller spacings are used. Radiation from elements L and M traveling toward point P begins 180 degrees out of phase. Moving the same distance over approximately parallel paths, the respective wavefronts from these elements remain 180 degrees out of phase. In other words, maximum cancellation takes place in the direction of P. The same condition is true for the opposite direction (toward P1). The P to P1 axis is the line of least radiation for the end-fire array.


Electrical News
Friday Quiz: Decibels and S Parameters
Test your knowledge of that ratio of two powers and...
eetimes.com
Tricky Dicky Makers
Dick Smith Electronics (known colloquially as Tricky Dicks here in...
eevblog.com
IPC Releases Electronics Quality Survey
The annual survey provides insight into how electronics manufacturers are...
eetimes.com
7 Black Hat Sessions Sure to Cause a Stir
At Black Hat, researchers will point out the weaknesses in...
eetimes.com
Jibo Wants To Be Your Family's First Robot
Meet Jibo, a connected personal assistant that aims to be...
eetimes.com
Google, Facebook Clash at Con
Google and Facebook will share their visions of datacenter networking...
eetimes.com
Nadella's Windows 9 & Device Plans Explained
Microsoft CEO Satya Nadella says his company is "streamlining" Windows...
eetimes.com
Apple OS X Yosemite Beta Debuts
Apple's obsession with secrecy gives way to involving customers in...
eetimes.com
60 GHz Startup Targets Mobile
On the heels of Qualcomm's acquisition of 60 GHz chipset...
eetimes.com
Apple in China: Best Is Yet to Come?
Apple CEO Tim Cook described Apple's business prospect in China...
eetimes.com
Moog Theremini Melds Analog & Digital
Robert Moog, the inventor of the voltage-controlled oscillator that enabled...
eetimes.com
Power Week: Thermoelectric Energy Harvesting's Bright Future
This week, the future of sub-watt thermoelectric energy harvesting as...
eetimes.com
Energy Harvesting Chip Demonstrated
Imec and Omron have collaborated on a tiny 5x6 cm...
eetimes.com
EEVblog #644 – How To Design Front Panels On Extruded Enclosures – µSupply Part 14
Dave shows some techniques on how to build and mount...
eevblog.com
Silicon Photonics Acquires Key Subsystems
Silicon photonics will someday replace the expensive gallium arsenide photonics...
eetimes.com
Apollo 11 Inspired Generations of Innovators
Neil and Buzz were on the moon. Orbiting above, there...
eetimes.com
Smartwatches Suck, Says Pebble Backer
There are only two significant platforms in the smartwatch arena...
eetimes.com
Future Engineers: Don't 'Trip Up' on Your College Road Trip
A future engineering student gives his advice on making the...
eetimes.com
Future Engineers: Don't 'Trip Up' on Your College Road Trip
A future engineering student gives his advice on making the...
eetimes.com
DARPA's Chip Office Reboots to Tackle Cost & Complexity
DARPA's Microelectronics Technology Office, the source of much chip innovation...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +