Quantcast Transformer Coupling

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-13 Figure 1-11 shows an impedance-coupling network between two stages of amplification. L1 is the load for Q1 and develops the output signal of the first stage. Since the d.c. resistance of a coil is low, the efficiency of the amplifier stage is increased. The amount of signal developed in the output of the stage depends on the inductive reactance of L1. Remember the formula for inductive reactance: Figure 1-11.—Impedance-coupled transistor amplifier. The formula shows that for inductive reactance to be large, either inductance or frequency or both must be high. Therefore, load inductors should have relatively large amounts of inductance and are most effective at high frequencies. This explains why impedance coupling is usually not used for audio amplifiers. The rest of the coupling network (C1 and R1) functions just as their counterparts (C1 and R2) in the RC-coupling network. C1 couples the signal between stages while blocking the d.c. and R1 develops the input signal to the second stage (Q2). Transformer Coupling Figure 1-12 shows a transformer-coupling network between two stages of amplification. The transformer action of T1 couples the signal from the first stage to the second stage. In figure 1-12, the primary of T1 acts as the load for the first stage (Q1) and the secondary of T1 acts as the developing impedance for the second stage (Q2). No capacitor is needed because transformer action couples the signal between the primary and secondary of T1.


Electrical News
Micron Expands IoT & Auto Memory Products
Micron expanded its offerings for embedded applications and the connected...
eetimes.com
Moore's Law Competitor Wins $150K Elevator Pitch Prize
Quilt packaging wins $150,000 prize for best elevator pitch explaining...
eetimes.com
Nexus 6 Vs. iPhone 6 Plus: Phablet Deathmatch
There's never been a better time to buy a big-screened...
eetimes.com
Europe vs. Google
Google may not give much thanks for the gift Europe...
eetimes.com
Stephen Hawking: How He Speaks & Spells
The technology that helped resurrect the life of Stephen Hawking...
eetimes.com
Sony's 3-Year Plan: Treading Water or Just Sinking?
Sony's three-year outlook for its mobile business "isn't aiming for...
eetimes.com
HMC Spec Update Signals Healthy Adoption
The release of the Hybrid Memory Cube specification 2.0, along...
eetimes.com
Power Week: Si-Based Power Discretes to Continue to Dominate Over Next Decade
Discrete power electronics are predicted to become a $23 billion...
eetimes.com
Book Review: Deadly Odds by Allen Wyler
This is a great read that will have you on...
eetimes.com
Supercapacitors: A New Hero in the Spotlight
Today's supercapacitors are being used to replace rechargeable batteries in...
eetimes.com
EEVblog #687 – EFTPOS PIN Pad Terminal Teardown
What’s inside a smart card pinpad EFTPOS terminal? Dave looks...
eevblog.com
Your Part in the Recovery
Engineers and innovators are central to the slow but ongoing...
eetimes.com
Motor Controllers Offer Improved Noise Immunity
Operating at 5V gives these digital signal controllers enhanced noise...
eetimes.com
NXP to Pick Up Its Missing IoT Link - Bluetooth Low Energy
In pursuit of the Internet of Things market, NXP Semiconductors...
eetimes.com
USB Oscilloscopes Get Beta Drivers for Open-Source Hardware
Pico Technology has released beta versions of drivers for BeagleBoneBlack...
eetimes.com
It's Alive! The 3D Printing of Living Tissues
Within a generation, we likely will not just hear of...
eetimes.com
Curiosity Killed the Cat (Just Call Me Mr. Curiosity)
Max desperately needs a cat deterrent, but how should this...
eetimes.com
Memory Design Articles: Diagnostics, Datacenters & Failures
Here's a roundup of recent design articles that are relevant...
eetimes.com
Megachips to Launch DSP-Based Sensor Fusion IC
The growing sensor-fusion controller market for smartphones and wearable devices...
eetimes.com
MediaTek Plans $49 Million Investment in China's Chip Fund
Taiwan's largest chip designer has announced it will invest $48.9...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +