• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
Short Circuit Protection
TESTING

Neets Module 07-Introduction to Solid-State Devices and Power Supplies
Page Navigation
  204    205    206    207    208  209  210    211    212    213    214  
4-52 Figure 4-50.—Series regulator with current limiting. When load current is below 600 milliamperes, the base-to-emitter voltage on Q2 is not high enough to allow Q2 to conduct. With Q2 cut off, the circuit acts like a series regulator. When the load current increases above 600 milliamperes, the voltage drop across R4 increases to more than 0.6 volt. This causes Q2 to conduct through resistor R2, thereby decreasing the voltage on the base of pass transistor Q1. This action causes Q1 to conduct less. Therefore, the current cannot increase above 600 to 700 milliamperes. By increasing the value of R4, you can limit the current to almost any value. For example, a 100- ohm resistor develops a voltage drop of 0.6 volt at 6 milliamperes of current. You may encounter current-limiting circuits that are more sophisticated, but the theory of operation is always the same. If you understand this circuit, you should have no problem with the others. TROUBLESHOOTING POWER SUPPLIES Whenever you are working with electricity, the proper use of safety precautions is of the utmost importance to remember. In the front of all electronic technical manuals, you will always find a section on safety precautions. Also posted on each piece of equipment should be a sign listing the specific precautions for that equipment. One area that is sometimes overlooked, and is a hazard especially on board ship, is the method in which equipment is grounded. By grounding the return side of the power transformer to the metal chassis, the load being supplied by the power supply can be wired directly to the metal chassis. Thereby the necessity of wiring directly to the return side of the transformer is eliminated. This method saves wire and reduces the cost of building the equipment, and while it solves one of the problems of the manufacturer, it creates a problem for you, the technician. Unless the chassis is physically grounded to the ship's ground (the hull), the chassis can be charged (or can float) several hundred volts above ship's ground. If you come in contact with the metal chassis at the same time you are in contact with the ship's hull, the current from the chassis can use your body as a low resistance path back to the ship's ac generators. At best this can be an unpleasant experience; at worst it can be fatal. For this reason Navy electronic equipment is always grounded to the ship's hull, and approved rubber mats are required






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.