Quantcast Class C Amplifier Operation

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-22 Class AB Amplifier Operation Amplifiers designed for class AB operation are biased so that collector current is zero (cutoff) for a portion of one alternation of the input signal. This is accomplished by making the forward-bias voltage less than the peak value of the input signal. By doing this, the base-emitter junction will be reverse biased during one alternation for the amount of time that the input signal voltage opposes and exceeds the value of forward-bias voltage. Therefore, collector current will flow for more than 180 degrees but less than 360 degrees of the input signal, as shown in figure 2-15 view B. As compared to the class A amplifier, the dc operating point for the class AB amplifier is closer to cutoff. The class AB operated amplifier is commonly used as a push-pull amplifier to overcome a side effect of class B operation called crossover distortion. Class B Amplifier Operation Amplifiers biased so that collector current is cut off during one-half of the input signal are classified class B. The dc operating point for this class of amplifier is set up so that base current is zero with no input signal. When a signal is applied, one half cycle will forward bias the base-emitter junction and IC will flow. The other half cycle will reverse bias the base-emitter junction and IC will be cut off. Thus, for class B operation, collector current will flow for approximately 180 degrees (half) of the input signal, as shown in figure 2-15 view C. The class B operated amplifier is used extensively for audio amplifiers that require high-power outputs. It is also used as the driver- and power-amplifier stages of transmitters. Class C Amplifier Operation In class C operation, collector current flows for less than one half cycle of the input signal, as shown in figure 2-15 view D. The class C operation is achieved by reverse biasing the emitter-base junction, which sets the dc operating point below cutoff and allows only the portion of the input signal that overcomes the reverse bias to cause collector current flow. The class C operated amplifier is used as a radio-frequency amplifier in transmitters. From the previous discussion, you can conclude that two primary items determine the class of operation of an amplifier — (1) the amount of bias and (2) the amplitude of the input signal. With a given input signal and bias level, you can change the operation of an amplifier from class A to class B just by removing forward bias. Also, a class A amplifier can be changed to class AB by increasing the input signal amplitude. However, if an input signal amplitude is increased to the point that the transistor goes into saturation and cutoff, it is then called an OVERDRIVEN amplifier. You should be familiar with two terms used in conjunction with amplifiers — FIDELITY and EFFICIENCY. Fidelity is the faithful reproduction of a signal. In other words, if the output of an amplifier is just like the input except in amplitude, the amplifier has a high degree of fidelity. The opposite of fidelity is a term we mentioned earlier — distortion. Therefore, a circuit that has high fidelity has low distortion. In conclusion, a class A amplifier has a high degree of fidelity. A class AB amplifier has less fidelity, and class B and class C amplifiers have low or "poor" fidelity. The efficiency of an amplifier refers to the ratio of output-signal power compared to the total input power. An amplifier has two input power sources: one from the signal, and one from the power supply. Since every device takes power to operate, an amplifier that operates for 360 degrees of the input signal uses more power than if operated for 180 degrees of the input signal. By using more power, an amplifier has less power available for the output signal; thus the efficiency of the amplifier is low. This is the case


Electrical News
Integre Brings x1 HyperLink DSP to FPGA
Integre's IP core allows a user-defined system to communicate with...
eetimes.com
SanDisk Goes For Big Data Flash Market
InfiniFlash storage platform puts company in competition with customers and...
eetimes.com
March 28 is Arduino Day -- Break Out the Party Hats!
On 3/28/2015, the folks at SparkFun are offering up to...
eetimes.com
Four Steps to Field-Oriented Control -- The Final Two
Concluding Dave's series on implementing field-oriented control, he looks at...
eetimes.com
Why We Disagree with the IEEE's Patent Policy
The IEEE's new patent policy could slash royalty revenues and...
eetimes.com
Linux Seeks Security, Unity
Linux needs greater security, unity and interoperability to meet its...
eetimes.com
Friday Quiz: EE 101, Part 3
In this third installment from "Electrical Engineering 101," we look...
eetimes.com
Robotic Bacteria Senses Humidity
A bacterial spore studded with graphene quantum dots makes the...
eetimes.com
Teensy-Weensy GPAK4 Mixed Signal FPGAs
For embedded designers who aren't familiar with FPGAs, Silego's teensy-weensy...
eetimes.com
Vehicle Reliability Is Up, Especially in Powertrain
Some cars are more reliable than others, but even the...
eetimes.com
Convince Me Why I Should Care About VR
When I go to a conference and see bobble-headed enthusiasts...
eetimes.com
OFC: Transceiver Module Spec Prevents Mismatching
A keyed CDFP optical module prevents cables from being plugged...
eetimes.com
Single-Chip FPGA-Based Embedded Vision & Fusion Analytics Solutions
The idea here is to perform 'processing on the edge'...
eetimes.com
Micron, Intel Flash 3D NAND
Micron and Intel have co-developed a 3-D flash NAND chip...
eetimes.com
ESC Minneapolis 2015 Sneak Peek! Baking Pis in Africa
Do you want to hear tall tales of rafting the...
eetimes.com
The Art Of Electronics 3rd Edition
25 years in the making, the bible of electronics is...
eevblog.com
Patent Suits Have Global Impacts
Companies found guilty of patent infringement, even those under an...
eetimes.com
Nanolaser Enables On-Chip Photonics
\Researchers at the University of Washington and Stanford has created...
eetimes.com
DARPA Robotics Challenge Gears Up For Finale
The latest highlights from DARPA's years-long robotics competition show us...
eetimes.com
Core Independent MCUs Come to Power Management
Using redundant sets of key power management functions, Microchip has...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +