Quantcast Class C Amplifier Operation

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-22 Class AB Amplifier Operation Amplifiers designed for class AB operation are biased so that collector current is zero (cutoff) for a portion of one alternation of the input signal. This is accomplished by making the forward-bias voltage less than the peak value of the input signal. By doing this, the base-emitter junction will be reverse biased during one alternation for the amount of time that the input signal voltage opposes and exceeds the value of forward-bias voltage. Therefore, collector current will flow for more than 180 degrees but less than 360 degrees of the input signal, as shown in figure 2-15 view B. As compared to the class A amplifier, the dc operating point for the class AB amplifier is closer to cutoff. The class AB operated amplifier is commonly used as a push-pull amplifier to overcome a side effect of class B operation called crossover distortion. Class B Amplifier Operation Amplifiers biased so that collector current is cut off during one-half of the input signal are classified class B. The dc operating point for this class of amplifier is set up so that base current is zero with no input signal. When a signal is applied, one half cycle will forward bias the base-emitter junction and IC will flow. The other half cycle will reverse bias the base-emitter junction and IC will be cut off. Thus, for class B operation, collector current will flow for approximately 180 degrees (half) of the input signal, as shown in figure 2-15 view C. The class B operated amplifier is used extensively for audio amplifiers that require high-power outputs. It is also used as the driver- and power-amplifier stages of transmitters. Class C Amplifier Operation In class C operation, collector current flows for less than one half cycle of the input signal, as shown in figure 2-15 view D. The class C operation is achieved by reverse biasing the emitter-base junction, which sets the dc operating point below cutoff and allows only the portion of the input signal that overcomes the reverse bias to cause collector current flow. The class C operated amplifier is used as a radio-frequency amplifier in transmitters. From the previous discussion, you can conclude that two primary items determine the class of operation of an amplifier — (1) the amount of bias and (2) the amplitude of the input signal. With a given input signal and bias level, you can change the operation of an amplifier from class A to class B just by removing forward bias. Also, a class A amplifier can be changed to class AB by increasing the input signal amplitude. However, if an input signal amplitude is increased to the point that the transistor goes into saturation and cutoff, it is then called an OVERDRIVEN amplifier. You should be familiar with two terms used in conjunction with amplifiers — FIDELITY and EFFICIENCY. Fidelity is the faithful reproduction of a signal. In other words, if the output of an amplifier is just like the input except in amplitude, the amplifier has a high degree of fidelity. The opposite of fidelity is a term we mentioned earlier — distortion. Therefore, a circuit that has high fidelity has low distortion. In conclusion, a class A amplifier has a high degree of fidelity. A class AB amplifier has less fidelity, and class B and class C amplifiers have low or "poor" fidelity. The efficiency of an amplifier refers to the ratio of output-signal power compared to the total input power. An amplifier has two input power sources: one from the signal, and one from the power supply. Since every device takes power to operate, an amplifier that operates for 360 degrees of the input signal uses more power than if operated for 180 degrees of the input signal. By using more power, an amplifier has less power available for the output signal; thus the efficiency of the amplifier is low. This is the case


Electrical News
10 Eye-Opening IC Insights
The semiconductor industry will step ahead at a decent 7%...
eetimes.com
EEVblog #708 – Free Energy BULLSHIT!
Are the laws of physics being bent? Dave explains why...
eevblog.com
Increased Functionally Drives Flash Array Adoption
Early all-flash arrays were dedicated to a single application, but...
eetimes.com
New Technology Detects Cyberattacks By Power Consumption
Startup's "power fingerprinting" approach catches stealthy malware within milliseconds in...
eetimes.com
Imagination Sees Life Beyond Games
Imagination Technologies continues to hedge its bets on graphics-based processing,...
eetimes.com
Motion Control Comes to Masses with TI Launchpad
Prototyping of brushless motor control systems has required specialized expertise,...
eetimes.com
Holographic Images for Healthcare
Like a scene from a science fiction film, this new...
eetimes.com
Banking Trojans Disguised As ICS/SCADA Software Infecting Plants
Researcher spots spike in traditional financial malware hitting ICS/SCADA networks...
eetimes.com
Wide-Spread SSD Encryption is Inevitable
As vendors have steadily released self-encrypting SSDs for client devices...
eetimes.com
Obnoxious Lights
Tom Burke continues on his quest to master the Arduino...
eetimes.com
BlackBerry CEO: Net Neutrality For Mobile Apps
CEO John Chen is asking legislators to expand the definition...
eetimes.com
4 Takeaways From Accenture's $14 Trillion IoT Prediction
Accenture's report says the industrial Internet of Things will create...
eetimes.com
French Startup Expands 3D to the Room
With still 26 days to go, Kickstarter project Immersis from...
eetimes.com
Friday Quiz: Inductance and Capacitance in Transmission Lines
High frequencies bring out the worst in components and signal...
eetimes.com
Fraunhofer Develops MEMS Optical Grating for Medium Infrared
The Fraunhofer Institute for Photonic Microsystems IPMS is developing a...
eetimes.com
IoT Hears Two Cellular Calls
2G and LTE standards efforts promise lower cost, lower power...
eetimes.com
Intel, Microsoft, Autodesk Creating Life
Microbial Robotics has created microscopic robots from living viruses (ViruBots)...
eetimes.com
DesignCon: PCB Design Tools Track Covers DDR4, Differential Crosstalk
This DesignCon track explores effective high-speed design and design choices...
eetimes.com
Spectrometer Lights Up IoT, Smartly
Analog circuit, MEMS, and sensors manufacturer AMS announced an integrated...
eetimes.com
Talking Terminations
Random thoughts on series termination and SI....
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +