Quantcast Figure 4-1B.Block diagram of a basic power supply

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
4-2 Figure 4-1A.—Block diagram of a basic power supply. As illustrated in view B of figure 4-1, the first section is the TRANSFORMER. The transformer steps up or steps down the input line voltage and isolates the power supply from the power line. The RECTIFIER section converts the alternating current input signal to a pulsating direct current. However, as you proceed in this chapter you will learn that pulsating dc is not desirable. For this reason a FILTER section is used to convert pulsating dc to a purer, more desirable form of dc voltage. Figure 4-1B.—Block diagram of a basic power supply. The final section, the REGULATOR, does just what the name implies. It maintains the output of the power supply at a constant level in spite of large changes in load current or input line voltages. Now that you know what each section does, let's trace an ac signal through the power supply. At this point you need to see how this signal is altered within each section of the power supply. Later on in the chapter you will see how these changes take place. In view B of figure 4-1, an input signal of 115 volts ac is applied to the primary of the transformer. The transformer is a step-up transformer with a turns ratio of 1:3. You can calculate the output for this transformer by multiplying the input voltage by the ratio of turns in the primary to the ratio of turns in the secondary; therefore, 115 volts ac 3 = 345 volts ac (peak-to- peak) at the output. Because each diode in the rectifier section conducts for 180 degrees of the 360-degree input, the output of the rectifier will be one-half, or approximately 173 volts of pulsating dc. The filter section, a network of resistors, capacitors, or inductors, controls the rise and fall time of the varying signal; consequently, the signal remains at a more constant dc level. You will see the filter process more clearly in the discussion of the actual filter circuits. The output of the filter is a signal of 110 volts dc, with ac ripple riding on the dc. The reason for the lower voltage (average voltage) will be explained later in this chapter. The regulator maintains its output at a constant 110-volt dc level, which is used by the electronic equipment (more commonly called the load). Q1.   What are the four basic sections of a power supply? Q2.   What is the purpose of the rectifier section?


Electrical News
eevBLAB #9 – Meet Dave
Meet Dave2, the first EEVblog employee....
eevblog.com
Qualcomm to Leverage Monolithic 3D for Smartphones
Qualcomm is looking to leverage Monolithic 3D IC technology to...
eetimes.com
Full Human Head Transplant May Be Closer Than You Think
Suddenly, some of the things we read in science fiction...
eetimes.com
Automotive Chip Reliability: A Matter of Design Methods
Up to 90% of all innovations today are generated through...
eetimes.com
Paper Memory Ready to Roll
Researchers at the Finish VTT Technical Research Centre have demonstrated...
eetimes.com
Top 10 Robotics Projects on Kickstarter
EBN takes a look at the newest robots coming down...
eetimes.com
Moore's Law: Dead or Alive
Moore's law is still alive and kicking after 50 years,...
eetimes.com
'Connected Home' Key to Intel's Lantiq Deal
Intel has formed a freshly minted "Connected Home Division," which...
eetimes.com
When Coding Errors Can Kill
Under a mild-sounding title, software safety expert Sean Beatty will...
eetimes.com
When Coding Errors Can Kill
Under a mild-sounding title, software safety expert Sean Beatty will...
eetimes.com
Friday Quiz: Power Circuits & Measurements
Learn from power-integrity expert Steve Sandler through his thoughtful questions...
eetimes.com
Vision for Machinery Becoming More Affordable
Machines that can see and act on that information are...
eetimes.com
Tiny Pacemaker for Tiny People
Micropacemaker is but another example of the how the trend...
eetimes.com
Rocket Fuels Student Space Dreams
Boston students hope to break records by launching a homegrown...
eetimes.com
Medtronic Wins EU Approval for Leadless Pacemaker
The approval comes a year and a half after St....
eetimes.com
Five Fascinating Power Facts About Supercomputers
Thought you knew everything about supercomputers - those almost unimaginably...
eetimes.com
EEVblog #734 – Giroptic 360cam Kickstarter Prototype
Dave takes a quick look at the first run Kickstarter...
eevblog.com
How Tesla Disrupts Infotainment Supply Chain
Automaker Tesla moves away from Tier-One designers on infotainment and...
eetimes.com
TSMC Cuts Capex by $1 Billion
Taiwan Semiconductor Manufacturing Co. (TSMC) is cutting its planned capital...
eetimes.com
Odds of Success of Mie Fujitsu, Japan's Pure-Play Foundry
Mie Fujitsu Semiconductor is a foundry born from Fujitsu's lack...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +