Quantcast Figure 2-7.Cutoff in a conventional tube

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-7 Figure 2-7.—Cutoff in a conventional tube. In view B, a bias voltage of -6 volts is applied to the grid. As you can see, some of the electrostatic lines of force are attracted to the negatively charged grid wires while the rest pass through the grid spacings. Because there are fewer lines of force reaching the cathode, there are fewer paths for electrons to use to reach the plate. As a result, conduction through the tube is decreased. In view C, the negative potential of the grid has been raised to -20 volts, which drives the tube into cutoff. All of the electrostatic lines of force terminate at the negatively charged grid, instead of continuing on to the cathode. The electrons emitted by the cathode will not feel the electrostatic attractive force of the positively charged plate. Under these conditions, current cannot flow through the tube. Now look at figure 2-8. Here you see a diagram of a variable-mu, or remote-cutoff, tube. The only difference between the remote-cutoff tube depicted and the sharp-cutoff tube is in the grid wire spacing. In the conventional sharp-cutoff tube, the grid wires are evenly spaced, while in the remote-cutoff tube the grid wires in the middle of the grid are placed relatively far apart. This is shown in view A.


Electrical News
Putting the 'Wear' in Wearables
Wellograph wants to create a stylish activity tracker that you...
eetimes.com
Talking to Our Tech
Nuance is a leader in speech and imaging applications and...
eetimes.com
Top 10 Candidates for Next-Gen Storage
What's the next step in the evolution of memory? This...
eetimes.com
A Taste of LabVIEW
I attended an introduction to LabVIEW workshop to get some...
eetimes.com
Designing for Wearables: Tremendous Opportunity but Not Without Challenges
The wearables space is wide open and exploding with opportunity,...
edn.com
Memory Product Round Up: September 2014
Summaries of memory products making news this month, including SD...
eetimes.com
Some Days You're the Pigeon, Others You're the Statue
Are cities still commissioning new statues, or is this practice...
eetimes.com
M2M & IoT Meet Asset Tracking
The advent of highly integrated and low cost Field Programmable...
eetimes.com
Where's the Silicon in Silicon Valley?
An engineer who has experienced firsthand the changes that the...
eetimes.com
Teardown.com Analysis: Apple iPhone 6 Plus
Qualcomm appears but not as RF, and the A8 is...
eetimes.com
Maker Faire Meets the Big Apple
Hundreds of large companies, startups, maker spaces, and scientists converged...
eetimes.com
Why You Can't Judge a Company by Its Version 1.0 Product
You really don't need to spend your valuable time fighting...
eetimes.com
Inside Intel's Gen 8 GPU
Intel recently gave a tour inside the workings of its...
eetimes.com
Australian Crowd Source Equity Funding Report
I have been made aware of this Australian government requested...
eevblog.com
Startup's Piezoelectric MEMS Mics May Take Over
By using piezoelectric diaphragm, Vesper claims its MEMS mics today...
eetimes.com
EEVblog #664 – Peltier TEG Energy Harvesting Experiments
Dave plays around with an energy harvesting kit to see...
eevblog.com
Tesla Model S – Australian Test Drive
Dave test drives one of the first right hand drive...
eevblog.com
What Apple Stuffed Inside iPhone 6 Plus
The iPhone 6 Plus packs a host of new tech...
eetimes.com
Secure WiFi Shield for Arduino Platforms
The Arduino Wi-Fi Shield 101 is designed to enable rapid...
eetimes.com
Digital Level Shifting
Do you need to take your signals to the next...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +