Quantcast Figure 2-7.Cutoff in a conventional tube

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-7 Figure 2-7.—Cutoff in a conventional tube. In view B, a bias voltage of -6 volts is applied to the grid. As you can see, some of the electrostatic lines of force are attracted to the negatively charged grid wires while the rest pass through the grid spacings. Because there are fewer lines of force reaching the cathode, there are fewer paths for electrons to use to reach the plate. As a result, conduction through the tube is decreased. In view C, the negative potential of the grid has been raised to -20 volts, which drives the tube into cutoff. All of the electrostatic lines of force terminate at the negatively charged grid, instead of continuing on to the cathode. The electrons emitted by the cathode will not feel the electrostatic attractive force of the positively charged plate. Under these conditions, current cannot flow through the tube. Now look at figure 2-8. Here you see a diagram of a variable-mu, or remote-cutoff, tube. The only difference between the remote-cutoff tube depicted and the sharp-cutoff tube is in the grid wire spacing. In the conventional sharp-cutoff tube, the grid wires are evenly spaced, while in the remote-cutoff tube the grid wires in the middle of the grid are placed relatively far apart. This is shown in view A.


Electrical News
HMC Spec Update Signals Healthy Adoption
The release of the Hybrid Memory Cube specification 2.0, along...
eetimes.com
Power Week: Si-Based Power Discretes to Continue to Dominate Over Next Decade
Discrete power electronics are predicted to become a $23 billion...
eetimes.com
Book Review: Deadly Odds by Allen Wyler
This is a great read that will have you on...
eetimes.com
Supercapacitors: A New Hero in the Spotlight
Today's supercapacitors are being used to replace rechargeable batteries in...
eetimes.com
EEVblog #687 – EFTPOS PIN Pad Terminal Teardown
What’s inside a smart card pinpad EFTPOS terminal? Dave looks...
eevblog.com
Your Part in the Recovery
Engineers and innovators are central to the slow but ongoing...
eetimes.com
Motor Controllers Offer Improved Noise Immunity
Operating at 5V gives these digital signal controllers enhanced noise...
eetimes.com
NXP to Pick Up Its Missing IoT Link - Bluetooth Low Energy
In pursuit of the Internet of Things market, NXP Semiconductors...
eetimes.com
USB Oscilloscopes Get Beta Drivers for Open-Source Hardware
Pico Technology has released beta versions of drivers for BeagleBoneBlack...
eetimes.com
It's Alive! The 3D Printing of Living Tissues
Within a generation, we likely will not just hear of...
eetimes.com
Curiosity Killed the Cat (Just Call Me Mr. Curiosity)
Max desperately needs a cat deterrent, but how should this...
eetimes.com
Memory Design Articles: Diagnostics, Datacenters & Failures
Here's a roundup of recent design articles that are relevant...
eetimes.com
Megachips to Launch DSP-Based Sensor Fusion IC
The growing sensor-fusion controller market for smartphones and wearable devices...
eetimes.com
MediaTek Plans $49 Million Investment in China's Chip Fund
Taiwan's largest chip designer has announced it will invest $48.9...
eetimes.com
Reduce Noise When Making M-PHY Measurements
To make useful measurements on M-PHY Gear 3, you need...
eetimes.com
EEVblog #686 – Mailbag
A monster sized high definition 50fps Mailbag, with two special...
eevblog.com
Startup to Open Source Parallel CPU
Rex Computing plans a parallel processor that could deliver a...
eetimes.com
OCZ Cuts Into Read-Intensive SSD Segment
The SATA-based Saber 1000 Series is yet another option in...
eetimes.com
Infotainment Systems Drive Automotive SSD Adoption
In-vehicle entertainment and navigation systems are becoming more mainstream and...
eetimes.com
Scaling Up Text Rendering on Scaled-Down Devices
The need to support a widening range of languages and...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +