Quantcast VARIABLE-MU TUBES

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
2-6 VARIABLE-MU TUBES In most electron-tube circuits, the operating level of a tube is determined by the level of bias. When a negative-bias voltage is applied to the control grid of a tube, with no input signal, the conduction through the tube is reduced; thus the damage to the tube is minimized. There is one drawback to this. Because the control grid is already negatively charged by the bias voltage, the negative alternation of a large input signal will drive the tube into cutoff long before the positive alternation can drive the tube into saturation. Once the negative alternation reaches a certain level (determined by the bias voltage and tube characteristics), the tube simply cuts off. For this reason, conventional tubes, which you previously studied, are called SHARP-CUTOFF TUBES. Because of this sharp cutoff, the range of amplification of the conventional tube is limited by the bias voltage and tube characteristics. Once this range is exceeded, the output becomes distorted due to cutoff. In most applications, the sharp cutoff feature of conventional electron tubes causes no problems. However, in some applications electron tubes are required to amplify relatively large input signals without distortion. For this reason, the variable-mu tube was developed. VARIABLE-MU TUBES have the ability to reduce their mu, or (µ), as the input signal gets larger. As the mu (µ) decreases, the likelihood that the tube will be driven into cutoff decreases. (For an amplifier, this may appear to be self- defeating, but it isn't.) The idea is to amplify large input signals as much as possible without causing the tube to cutoff or create distortion. Because of their ability to avoid being driven into cutoff, variable-mu tubes are called REMOTE-CUTOFF TUBES. You should be aware, however, that a variable-mu tube can be driven into cutoff, but the amplitude of the input signal required to do so is considerably greater than in conventional sharp-cutoff tubes. The key to the ability of a variable-mu tube to decrease gain with an increase in the amplitude of the input lies in its grid construction. To understand how the unique grid construction of a variable-mu tube works, we will first examine the grid operation of a conventional tube during cutoff. Look at figure 2-7. Here, you see a diagram of a conventional sharp-cutoff triode with zero volts applied to the control grid. In view A, the majority of the electrostatic lines of force leave the positive plate (+) and travel unhindered between the evenly spaced grid wires to the negative cathode (-). Electrons emitted by the cathode travel along these lines from the cathode, through the grid spacings, to the plate.


Electrical News
Rohm Opens MEMS Foundry Operation
Rohm Co. Ltd. created a foundry business at the six-inch...
eetimes.com
Touch Taiwan: Display Vendors' 10 Bold Forecasts
Display suppliers are in the know. The companies exhibiting at...
eetimes.com
Power Week: RF Charging Startup & Dialog Semi Team Up for Over-the-Air Power
This week, "over-the-air" power got a boost when RF charging...
eetimes.com
9 Notorious Automotive Electronics Recalls
It's been a banner year so far for automotive recalls,...
eetimes.com
Indoor Navigation: The Next Big Thing
Custom system-on-chip from parent company mCube enables Ten Degrees to...
eetimes.com
New UART to WIFI chipset will unleash low cost Internet of Things
WiFi infrastructure is everywhere which makes easier to make network...
wsnblog.com
Data Centers May Ride on ASICs
Firebox, a research prototype in the works at UC Berkeley,...
eetimes.com
Product Compatibility Is a Constant Dilemma
Because most new products are based on previous ones, engineers...
eetimes.com
White Goods Consolidation Drives Power Deals
The power semiconductor industry has seen two key announcements this...
eetimes.com
How I Hacked My Home, IoT Style
It didn't take long to find a score of vulnerabilities...
eetimes.com
The Internet of Overhyped Things
Vendors and analysts would have us believe that the Internet...
eetimes.com
Apple Preps Jumbo iPad
Apple is preparing a larger version of its iPad for...
eetimes.com
Apple's iPhone 6: What to Expect
What will the iPhone 6 look like? And when will...
eetimes.com
Windows Threshold May Merge Windows Phone, RT
Microsoft's upcoming Windows Threshold operating system reportedly will merge Windows...
informationweek.com
Forget iPhone: 4 Megatrends in China's Smartphone Market
Touch Taiwan is exposing some of Asia's techno-political tensions, focused...
eetimes.com
Google's Project Ara Is Science Fiction, Says Critic
Google's Project Ara to develop a modular mobile smartphone is...
eetimes.com
Aging Brass: Cow Poop vs. Horse Doo-Doo
There are myriad ways to artificially age brass, including the...
eetimes.com
Google Preps Virtual Network
Google described Andromeda, a central server-based controller users will be...
eetimes.com
EEVblog #656 – Pacemaker Monitor Teardown
What’s inside a dial-in pacemaker monitor system? Datasheets: LMV824 MAX4330...
eevblog.com
Getting Your First Sales Pick Right
A company needs to create a repeatable sales process to...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +