• Home
  • Download PDF
  • Order CD-ROM
  • Order in Print
THREE-PHASE ROTATING FIELDS
SYNCHRONOUS MOTORS - 14177_92

Neets Module 05-Introduction to Generators and Motors
Page Navigation
  74    75    76    77    78  79  80    81    82    83    84  
4-7 Figure 4-5.—Three-phase rotating-field polarities and input voltages. The results of this analysis are shown for voltage points 1 through 7 in figure 4-5. At point 1, the magnetic field in coils 1-1A is maximum with polarities as shown. At the same time, negative voltages are being felt in the 2-2A and 3-3A windings. These create weaker magnetic fields, which tend to aid the 1-1A field. At point 2, maximum negative voltage is being felt in the 3-3A windings. This creates a strong magnetic field which, in turn, is aided by the weaker fields in 1-1A and 2-2A. As each point on the voltage graph is analyzed, it can be seen that the resultant magnetic field is rotating in a clockwise direction. When the three-phase voltage completes one full cycle (point 7), the magnetic field has rotated through 360º . Q6. What is the major difference between a two-phase and a three-phase stator? ROTOR BEHAVIOR IN A ROTATING FIELD For purposes of explaining rotor movement, let's assume that we can place a bar magnet in the center of the stator diagrams of figure 4-5. We'll mount this magnet so that it is free to rotate in this area. Let's also assume that the bar magnet is aligned so that at point 1 its south pole is opposite the large N of the stator field. You can see that this alignment is natural. Unlike poles attract, and the two fields are aligned so that they are attracting. Now, go from point 1 through point 7. As before, the stator field rotates clockwise. The bar magnet, free to move, will follow the stator field, because the attraction between the two fields






Western Governors University

Privacy Statement
Press Release
Contact

© Copyright Integrated Publishing, Inc.. All Rights Reserved. Design by Strategico.