Quantcast CLASSIFICATION OF GENERATORS

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
 
1-16 the field coils causes a small field current. Although small, this field current strengthens the magnetic field and allows the armature to generate a higher voltage. The higher voltage increases the field strength, and so on. This process continues until the output voltage reaches the rated output of the generator. CLASSIFICATION OF GENERATORS Self-excited generators are classed according to the type of field connection they use. There are three general types of field connections — SERIES-WOUND, SHUNT-WOUND (parallel), and COMPOUND-WOUND. Compound-wound generators are further classified as cumulative-compound and differential-compound. These last two classifications are not discussed in this chapter. Series-Wound Generator In the series-wound generator, shown in figure 1-15, the field windings are connected in series with the armature. Current that flows in the armature flows through the external circuit and through the field windings. The external circuit connected to the generator is called the load circuit. Figure 1-15.—Series-wound generator. A series-wound generator uses very low resistance field coils, which consist of a few turns of large diameter wire. The voltage output increases as the load circuit starts drawing more current. Under low-load current conditions, the current that flows in the load and through the generator is small. Since small current means that a small magnetic field is set up by the field poles, only a small voltage is induced in the armature. If the resistance of the load decreases, the load current increases. Under this condition, more current flows through the field. This increases the magnetic field and increases the output voltage. A series-wound dc generator has the characteristic that the output voltage varies with load current. This is undesirable in most applications. For this reason, this type of generator is rarely used in everyday practice. The series-wound generator has provided an easy method to introduce you to the subject of self- excited generators.


Electrical News
Sneak Peak! Not Your Grandmother's Embedded Systems @ ESC Silicon Valley 2015
When it comes to the embedded systems we'll see in...
eetimes.com
Tablet Shipments on the Wane
Analysts expect decline for 2015 amid consumer market saturation; hope...
eetimes.com
Mergers and Acquisitions Create New Test Challenges
Awareness of the nature of test capacity and the need...
eetimes.com
IceStorm: Reverse-Engineering the Lattice iCE40 Bitstream
It will be interesting to see how IceStorm plays out,...
eetimes.com
Samsung Boosts Batteries with Graphene
Researchers from Samsung's Advanced Institute of Technology (SAIT), the company's...
eetimes.com
TSMC Overtakes Intel in Chip Capex Ranking
Intel, the world's largest chip company, is set slip to...
eetimes.com
Is the End of IPv4 at Hand? Not Anytime Soon...
The American Registry for Internet Numbers (ARIN) has sent out...
eetimes.com
Thin Film Solar Cells May Rival Silicon
A consortium of 11 European institutions in eight countries aim...
eetimes.com
Bringing Flexible Port Switching and Role Swapping to USB
Using a proprietary FlexConnect algorithm, Microchip's Smart hub can be...
eetimes.com
8 Views of the Chip Horizon
The Imec Technology Forum provided updates on the outlook for...
eetimes.com
EEVblog #762 – How Secure Are Electronic Safe Locks?
How secure are electronic locks used on safes? Dave tries...
eevblog.com
Could India's Analog Wafer Fab be Moving South?
Cricket Semiconductor, a company set up with the purpose of...
eetimes.com
Apple Watch Tear Down Reveals European Chips
The Apple Watch, is the trailblazer of a wearables equipment...
eetimes.com
Ethernet Standards Ramp Up For Faster IT
The Ethernet Alliance and UNH-IOL hosted a plugfest to test...
eetimes.com
3-D Fingerprint Scanner Beats Apple's
The University of California at Davis, in cooperation with the...
eetimes.com
No Respect!
Every now and then, you see someone doing something, and...
eetimes.com
Friday Quiz: Name That 1994 Test Instrument
If you can remember back to 1994, then take a...
eetimes.com
Ambiq Director Takes on Interim CEO Role
Mike Noonen, a board director at Ambiq Micro Inc. (Austin,...
eetimes.com
Bosch Finds Graphene Magnetic Sensor 100x More Sensitive than Silicon
Researchers at the Stuttgart-based engineering company Bosch have worked with...
eetimes.com
It's a Bird. It's a Plane! It's a Drone!!
EE Times has gathered a panel of drone experts, including...
eetimes.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +